## Topological Methods in Nonlinear Analysis

### On positive viscosity solutions of fractional Lane-Emden systems

#### Abstract

In this paper we discuss the existence, nonexistence and uniqueness of positive viscosity solution for the following coupled system involving fractional Laplace operator on a smooth bounded domain $\Omega$ in $\mathbb R^n$: $\begin{cases} (-\Delta)^{s}u = v^p & \text{in } \Omega,\\ (-\Delta)^{s}v = u^q & \text{in } \Omega,\\ u= v=0 & \text{in } \mathbb R^n\setminus\Omega. \end{cases}$ By means of an appropriate variational framework and a Hölder regularity result for suitable weak solutions of the above system, we prove that such a system admits at least one positive viscosity solution for any $0 < s < 1$, provided that $p, q > 0$, $pq \neq 1$ and the couple $(p,q)$ is below the critical hyperbole $\frac{1}{p + 1} + \frac{1}{q + 1} = \frac{n - 2s}{n}$ whenever $n > 2s$. Moreover, by using the maximum principles for the fractional Laplace operator, we show that uniqueness occurs whenever $pq < 1$. Lastly, assuming $\Omega$ is star-shaped, by using a Rellich type variational identity, we prove that no such a solution exists if $(p,q)$ is on or above the critical hyperbole. A crucial point in our proofs is proving, given a critical point $u \in W_{0}^{ s, ({p+1})/{p}}({\Omega}) \cap W^{ 2s, ({p+1})/{p}}(\Omega)$ of a related functional, that there is a function $v$ in an appropriate Sobolev space (Proposition 2.1) so that $(u,v)$ is a weak solution of the above system and a bootstrap argument can be applied successfully in order to establish its H\"{o}lder regularity (Proposition 3.1). The difficulty is caused mainly by the absence of a $L^p$ Calderón-Zygmund theory with $p > 1$ associated to the operator $(-\Delta)^{s}$ for $0 < s < 1$.

#### Article information

Source
Topol. Methods Nonlinear Anal., Volume 53, Number 2 (2019), 407-425.

Dates
First available in Project Euclid: 2 April 2019

https://projecteuclid.org/euclid.tmna/1554170692

Digital Object Identifier
doi:10.12775/TMNA.2019.005

Mathematical Reviews number (MathSciNet)
MR3983979

#### Citation

Leite, Edir Junior Ferreira; Montenegro, Marcos. On positive viscosity solutions of fractional Lane-Emden systems. Topol. Methods Nonlinear Anal. 53 (2019), no. 2, 407--425. doi:10.12775/TMNA.2019.005. https://projecteuclid.org/euclid.tmna/1554170692

#### References

• N. Abatangelo, Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst. 35 (2015), 5555–5607.
• A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349–381.
• D. Applebaum, textitLévy processes – from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), 1336–1347.
• B. Barrios, E. Colorado, A. de Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133–6162.
• M. Birkner, J.A. Lópes-Mimbela and A. Wakolbinger, Comparison results and steady states for the Fujita equation with fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 83–97.
• M. Bonforte and V.J. Luis, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains, Arch. Ration. Mech. Anal. 218 (2015), 317–362.
• C. Brandle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh 143 (2013), 39–71.
• X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, \romI Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23–53.
• X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052–2093.
• L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.
• W. Choi, On strongly indefinite systems involving the fractional Laplacian, Nonlinear Anal. 120 (2015), 127–153.
• W. Choi and S. Kim, Minimal energy solutions to the fractional Lane-Enden system, \romI. Existence and singularity formation, arXiv: 1610.02853, 2016.
• Ph. Clément, D.G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), 923–940.
• F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, (Universitext)-Springer, 2012.
• E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.
• M.M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 (2012), 2205–2227.
• P. Felmer and S. Martínez, Existence and uniqueness of positive solutions to certain differential systems, Adv. Differential Equations 4 (1998), 575–593.
• P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal. 78 (2012), 123–144.
• M. Felsinger, M. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z. 279 (2015), 779–809.
• D.G. de Figueiredo, Semilinear elliptic systems, Nonlinear Funct. Anal. Appl. Diferential Equations, World Sci. Publishing, River Edge (1998), 122–152.
• D.G. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), 99–116.
• D.G. Figueiredo and B. Ruf, Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math. 1 (2004), 417–431.
• B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883–901.
• J. Hulshof and R. van der Vorst, Diferential Systems with Strongly Indefinite Variational Structure, J. Funct. Anal. 114 (1993), 32–58.
• T. Jakubowski, The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab. Math. Statist. 22 (2002), 419–441.
• E. Leite and M. Montenegro, A priori bounds and positive solutions for non-variational fractional elliptic systems, Differential Integral Equations 30 (2017), 947–974.
• E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), 125–151.
• M. Montenegro, The construction of principal spectra curves for Lane-Emden systems and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000), 193–229.
• F. Petitta, Some remarks on the duality method for integro-differential equations with measure data, Adv. Nonlinear Stud. 16 (2016), 115–124.
• S.I. Pohozaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Dokl. Akad. Nauk SSSR 165 (1965), 1408–1411.
• A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations 526 (2014), 1–19.
• X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian\rom: regularity up to the boundary, J. Math. Pures Appl. 101 (2014), 275–302.
• X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian, Calc. Var. Partial Differential Equations 50 (2014), 723–750.
• X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 (2014), 587–628.
• R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), 887–898.
• R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), 2105–2137.
• R. Servadei and E. Valdinoci, A Brezis–Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 (2013), 2445–2464.
• R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), 133–154.
• R. Servadei and E. Valdinoci, The Brezis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.
• L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math. 60 (2007), 67–112.
• E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, New York, 1970.
• L. Yan and M. Pei, Symmetry of solutions for a fractional system, Sci. China Math. 60 (2017), 1805–1824.
• L. Zhanga, M. Yua and J. Heb, A Liouville theorem for a class of fractional systems in $\R^n_+$, J. Differential Equations 263 (2017), 6025–6065.