Topological Methods in Nonlinear Analysis

Morse decompositions in the absence of uniqueness

Maria C. Carbinatto and Krzysztof P. Rybakowski

Full-text: Open access

Abstract

In this paper we define attractors and Morse decompositions in an abstract framework of curves in a metric space. We establish some basic properties of these concepts including their stability under perturbations. This extends results known for flows and semiflows on metric spaces to large classes of ordinary or partial differential equations with possibly nonunique solutions of the Cauchy problem. As an application, we first prove a Morse equation in the context of a Conley index theory which was recently defined in [M. Izydorek and K. P. Rybakowski, On the Conley index in Hilbert spaces in the absence of uniqueness, Fund. Math.] for problems without uniqueness, and then apply this equation to give an elementary proof of two multiplicity results for strongly indefinite elliptic systems previously obtained in [S. Angenent and R. van der Vorst, A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology, Math. Z. 231 (1999), 203–248] using Morse-Floer homology.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 18, Number 2 (2001), 205-242.

Dates
First available in Project Euclid: 22 August 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1471876699

Mathematical Reviews number (MathSciNet)
MR1911380

Zentralblatt MATH identifier
1035.37019

Citation

Carbinatto, Maria C.; Rybakowski, Krzysztof P. Morse decompositions in the absence of uniqueness. Topol. Methods Nonlinear Anal. 18 (2001), no. 2, 205--242. https://projecteuclid.org/euclid.tmna/1471876699


Export citation

References

  • S. Angenent and R. van der Vorst, A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology , Math. Z., 231 (1999), 203–248 \ref\no
  • \dfaCRM. C. Carbinatto and K. P. Rybakowski, Conley index and singular perturbation problems in the absence of uniqueness, in preparation
  • \ref\no\dfaCoC. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS 38, Amer. Math. Soc., Providence(1978)
  • \ref\no\dfaER. Engelking, Topologia Ogólna, PWN, Warszawa(1989) \ref\no
  • \dfaF1 R. Franzosa, The connection matrix theory for Morse decompositions , Trans. Amer. Math. Soc., 311 (1989), 561–592 \ref\no
  • \dfaFM R. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces , J. Differential Equations, 71 (1988), 270–287 \ref \no
  • \dfaHeD. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math. 840, Springer–Verlag, New York(1981) \ref\no \dfamarek
  • M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems , J. Differential Equations, 170 (2001), 22–50 \ref\no
  • \dfaIRM. Izydorek and K. P. Rybakowski, On the Conley index in Hilbert spaces in the absence of uniqueness, Fund. Math., to appear \ref\no\dfaIR2––––, The Conley index in Hilbert spaces and a problem of Angenent and van der Vorst, Fund. Math., to appear \ref\no \dfaIR3––––, Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory, in preparation \ref\no
  • \dfaRyK. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer–Verlag, Berlin(1987) \ref\no
  • \dfaRz K. P. Rybakowski and E. Zehnder, On a Morse equation in Conley's index theory for semiflows on metric spaces, Ergodic Theory Dynam. Systems, 5(1985), 123–143