Topological Methods in Nonlinear Analysis

The implicit function theorem for continuous functions

Carlos Biasi, Carlos Gutierrez, and Edivaldo L. dos Santos

Full-text: Open access

Abstract

In the present paper we obtain a new homological version of the implicit function theorem and some versions of the Darboux theorem. Such results are proved for continuous maps on topological manifolds. As a consequence, some versions of these classic theorems are proved when we consider differenciable (not necessarily $C^{1}$) maps.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 32, Number 1 (2008), 177-185.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463150471

Mathematical Reviews number (MathSciNet)
MR2466811

Zentralblatt MATH identifier
1173.58004

Citation

Biasi, Carlos; Gutierrez, Carlos; dos Santos, Edivaldo L. The implicit function theorem for continuous functions. Topol. Methods Nonlinear Anal. 32 (2008), no. 1, 177--185. https://projecteuclid.org/euclid.tmna/1463150471


Export citation

References

  • C. Biasi and E. L. dos Santos, A homological version of the implicit function theorem , Semigroup Forum, 72 (2006), 353–361 \ref\key 2
  • A. V. Černavskiĭ, Finite-to-one open mappings of manifolds, Math. Sb., 65 (1964), 357–369 \moreref \transl\nofrills English transl. in, Amer. Math. Soc. Transl. Ser. 2, 100 (1972), 253–267 \ref\key 3 ––––, Addendum to the paper “Finite-to-one open mappings of manifolds”, Math. Sb., 66 (1965), 471–472 \moreref \transl\nofrills English transl. in, Amer. Math. Soc. Transl. Ser 2, 100 (1972), 269–270 \ref\key 4
  • A. Dold, Lectures on Algebraic Topology, Die Grundlehren der Mathematischen Wissenschaften, 200 , Springer–Verlag (1972) \ref\key 5
  • W. Hurewicz and H. Wallman, Dimension Theory, Princeton Math. Series, 4 , Princeton Univ. Press, Princeton (1948) \ref\key 6
  • J. R. Munkres, Topology, a first course, Prentice–Hall, Inc., Englewood Cliffs, New Jersey (1975) \ref\key 7
  • Y. Y. Trohimčuk, Continuous mappings of domains in Euclidean space , Ukrain. Mat. Zh., 16 (1964), 196–211 \moreref \transl\nofrills English transl. in, Amer. Math. Soc. Transl. Ser. 2, 100 (1972), 271–291 \ref\key 8
  • J. Väisälä, Discrete open mappings on manifolds, Ann. Acad. Sci. Fenn. Ser. A I Math., 392(1966), 10 pp