Tohoku Mathematical Journal

Growth of Taylor coefficients over complex homogeneous spaces

Bruce K. Driver, Leonard Gross, and Laurent Saloff-Coste

Full-text: Open access


Given a non-negative Hermitian form on the dual of the Lie algebra of a complex Lie group, one can associate to it a (possibly degenerate) Laplacian on the Lie group. Under Hörmander's condition on the Laplacian there exists a smooth time-dependent measure, convolution by which gives the semigroup generated by the Laplacian. Fixing a positive time, we may form the Hilbert space of holomorphic functions on the group which are square integrable with respect to this “heat kernel” measure. At the same time, under Hörmander's condition, the given Hermitian form extends to a time dependent norm on the dual of the universal enveloping algebra.

In previous work we have shown that, for each positive time, the Taylor map, which sends a holomorphic function to its set of Taylor coefficients at the identity element, is a unitary map from the previous Hilbert space of square integrable holomorphic functions onto a Hilbert space contained in the dual of the universal enveloping algebra.

The present paper is concerned with the behavior of these two families of Hilbert spaces when the Lie group is replaced by a product of complex Lie groups or by a quotient by a not necessarily normal subgroup. We obtain thereby the first example of unitarity of the Taylor map for a complex manifold which is not a Lie group. In addition, we determine the behavior of these spaces as the given Hermitian form varies.

Article information

Tohoku Math. J. (2) Volume 62, Number 3 (2010), 427-474.

First available in Project Euclid: 15 October 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32W30: Heat kernels in several complex variables
Secondary: 35H20: Subelliptic equations 32C15: Complex spaces 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc.

Subelliptic heat kernel complex groups universal enveloping algebra Taylor map


Driver, Bruce K.; Gross, Leonard; Saloff-Coste, Laurent. Growth of Taylor coefficients over complex homogeneous spaces. Tohoku Math. J. (2) 62 (2010), no. 3, 427--474. doi:10.2748/tmj/1287148621.

Export citation


  • A. Ancona and J. C. Taylor, Some remarks on Widder's theorem and uniqueness of isolated singularities for parabolic equations, Partial differential equations with minimal smoothness and applications (Chicago, IL, 1990), 15--23, IMA Vol. Math. Appl. 42, Springer, New York, 1992.
  • N. Bourbaki, Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, Paris, 1963.
  • B. K. Driver, Heat kernels measures and infinite dimensional analysis, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 101--141, Contemp. Math. 338, Amer. Math. Soc., Providence, RI, 2003.
  • B. K. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie groups, New trends in stochastic analysis (Charingworth, 1994), 76--106, World Sci. Pub., River Edge, NJ, 1997.
  • B. K. Driver, L. Gross and L. Saloff-Coste, Holomorphic functions and subelliptic heat kernels over Lie groups, J. Eur. Math. Soc. (JEMS)11 (2009), 941--978.
  • B. K. Driver, L. Gross and L. Saloff-Coste, Surjectivity of the Taylor map for complex nilpotent Lie groups, Math. Proc. Cambridge Philos. Soc., 146 (2009), 177--195.
  • V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, Foundations of Lie theory and Lie transformation groups, Translated from the Russian by A. Kozlowski, Reprint of the 1993 translation [Lie groups and Lie algebras. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993], Springer-Verlag, Berlin, 1997.
  • L. Gross, Harmonic analysis for the heat kernel measure on compact homogeneous spaces, Stochastic analysis on infinite-dimensional spaces (Baton Rouge, LA, 1994), 99--110, Pitman Res. Notes Math. 310, Longman Sci. Tech., Harlow, 1994.
  • L. Gross, Uniqueness of ground states for Schrödinger operators over loop groups, J. Funct. Anal. 112 (1993), 373--441.
  • L. Gross, Some norms on universal enveloping algebras, Canad. J. Math. 50 (1998), 356--377.
  • V. V. Grušin, A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold, Mat. Sb. (N.S.), 84 (126) (1971), 163--195.
  • A. Guichardet, Symmetric Hilbert spaces and related topics, Springer-Verlag, Berlin, 1972. Infinitely divisible positive definite functions, Continuous products and tensor products, Gaussian and Poissonian stochastic processes, Lecture Notes in Mathematics, Vol. 261.
  • L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147--171.
  • P. Maheux, Analyse et géométrie sur les espaces homogènes, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 441--444.
  • P. Maheux, Estimations du noyau de la chaleur sur les espaces homogènes, J. Geom. Anal. 8 (1998), 65--96.
  • K. R. Parthasarathy and K. Schmidt, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, Lecture Notes in Math. Vol. 272, Springer-Verlag, Berlin, 1972.
  • L. Saloff-Coste, Parabolic Harnack inequality for divergence-form second-order differential operators, Potential theory and degenerate partial differential operators (Parma), Potential Anal. 4 (1995), 429--467.
  • N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Math., Cambridge University Press, Cambridge, 1992.