Tohoku Mathematical Journal

Rigid braid orbits related to {${\rm PSL}\sb 2(p\sp 2)$} and some simple groups

Takehito Shiina

Full-text: Open access

Abstract

We apply the braid orbit theorem to projective semilinear groups over the finite fields with $p^2$ elements and some almost simple groups of Lie type. The projective special linear groups $\psl_2(p^2)$ with $p\equiv\pm 3\; (\bmod\; 8)$, the Tits simple group, and some small simple groups occur regularly as Galois groups over the rationals.

Article information

Source
Tohoku Math. J. (2), Volume 55, Number 2 (2003), 271-282.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113246941

Digital Object Identifier
doi:10.2748/tmj/1113246941

Mathematical Reviews number (MathSciNet)
MR1979499

Zentralblatt MATH identifier
1042.12002

Subjects
Primary: 12F12: Inverse Galois theory

Keywords
Inverse Galois problem finite simple groups braid actions

Citation

Shiina, Takehito. Rigid braid orbits related to {${\rm PSL}\sb 2(p\sp 2)$} and some simple groups. Tohoku Math. J. (2) 55 (2003), no. 2, 271--282. doi:10.2748/tmj/1113246941. https://projecteuclid.org/euclid.tmj/1113246941


Export citation

References

  • J. H. Conway et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
  • L. Dieulefait and N. Vila, Projective linear groups as Galois groups over $\Q$ via Modular Representations, J. Symbolic Computation 30 (2000), 799--810.
  • L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leibzig, 1901.
  • W. Feit, Rigidity of $\mathrmAut(\psl_2(p^2)),\;p\equiv\pm 2\; (\bmod\; 5),\; p\neq2$, In: Proceedings of the Rutgers group theory year, 1983--1984 (New Brunswick, N. J., 1983--1984), 351--356, Cambridge Univ. Press, Cambridge, 1984.
  • D. Gorenstein, Finite Groups, Harper and Row, New York-Evanston-London, 1968.
  • G. Malle and B. H. Matzat, Inverse Galois Theory, Springer-Verlag, Berlin, 1999.
  • B. H. Matzat, Zöpfe und Galoissche Gruppen, J. Reine Angew. Math. 420 (1991), 99--159.
  • J.-F. Mestre, Courbes hyperelliptiques à multiplications réelles, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 721--724.
  • B. Przywara, Die Operation der Hurwitzschen Zopfgruppe auf den Erzeugendensystemklassen endlicher Gruppen, Diplomarbeit, Karlsruhe, 1988.
  • A. Reverter and N. Vila, Some projective linear groups over finite fields as Galois groups over $\Q$, Contemp. Math. 186 (1995), 51--63.
  • K. A. Ribet, On $l$-adic representations attatched to modular forms, Invent. Math. 28 (1975), 245--275.
  • J.-P. Serre, Topics in Galois Theory, Jones and Bartlett, Boston, 1992.
  • The GAP Group, GAP -- Groups, Algorithms, and Programming, Version $4.2$, Aachen, St. Andrews, 1999.