Tokyo Journal of Mathematics

Generalized Burgers Equation with Measure Data

Bui An TON

Full-text: Open access

Abstract

A generalized Burgers equation with measure data is studied. The existence of a weak solution of an initial boundary-value problem in a bounded cylindrical domain, is established. Time-periodic solutions are shown to exist and an optimization problem related to an inverse problem is considered.

Article information

Source
Tokyo J. Math., Volume 30, Number 1 (2007), 1-19.

Dates
First available in Project Euclid: 20 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1184963644

Digital Object Identifier
doi:10.3836/tjm/1184963644

Mathematical Reviews number (MathSciNet)
MR2328052

Zentralblatt MATH identifier
1130.35082

Subjects
Primary: 35L05: Wave equation
Secondary: 49J20: Optimal control problems involving partial differential equations 49N45: Inverse problems

Citation

TON, Bui An. Generalized Burgers Equation with Measure Data. Tokyo J. Math. 30 (2007), no. 1, 1--19. doi:10.3836/tjm/1184963644. https://projecteuclid.org/euclid.tjm/1184963644


Export citation

References

  • M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with lower-order terms and right-hand side measure, J. Math Pures Appl. 81 (2002), 533–566.
  • L. Boccardo and T. Gallouet, Nonlinear elliptic and parabolic equations involving measure data, J. Functional Analysis 87 (1989), 149–169.
  • L. Boccardo, T. Gallouet and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincare 16 (2000), 723–748.
  • H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62 (1983), 73–97.
  • G. Dalo Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions for elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 741–808.
  • J. J. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.