Tbilisi Mathematical Journal

A nilpotent Whitehead theorem for $\mathsf{TQ}$-homology of structured ring spectra

Michael Ching and John E. Harper

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The aim of this short paper is to prove a $\mathsf{TQ}$-Whitehead theorem for nilpotent structured ring spectra. We work in the framework of symmetric spectra and algebras over operads in modules over a commutative ring spectrum. Our main result can be thought of as a $\mathsf{TQ}$-homology analog for structured ring spectra of Dror's generalized Whitehead theorem for topological spaces; here $\mathsf{TQ}$-homology is short for topological Quillen homology. We also prove retract theorems for the $\mathsf{TQ}$-completion and homotopy completion of nilpotent structured ring spectra.

Article information

Tbilisi Math. J., Volume 11, Issue 3 (2018), 69-79.

Received: 26 June 2018
Accepted: 11 July 2018
First available in Project Euclid: 3 October 2018

Permanent link to this document

Primary: 55P43: Spectra with additional structure ($E_\infty$, $A_\infty$, ring spectra, etc.)
Secondary: 55U35: Abstract and axiomatic homotopy theory 55P48: Loop space machines, operads [See also 18D50] 18G55: Homotopical algebra

Symmetric spectra structured ring spectra calculus of functors operads topological Quillen homology


Ching, Michael; Harper, John E. A nilpotent Whitehead theorem for $\mathsf{TQ}$-homology of structured ring spectra. Tbilisi Math. J. 11 (2018), no. 3, 69--79. https://projecteuclid.org/euclid.tbilisi/1538532027

Export citation


  • G. Arone and M. Kankaanrinta. A functorial model for iterated Snaith splitting with applications to calculus of functors. In Stable and unstable homotopy (Toronto, ON, 1996), volume 19 of Fields Inst. Commun., pages 1–30. Amer. Math. Soc., Providence, RI, 1998.
  • M. Basterra. André-Quillen cohomology of commutative $S$-algebras. J. Pure Appl. Algebra, 144(2):111–143, 1999.
  • M. Basterra and M. A. Mandell. Homology and cohomology of $E\sb \infty$ ring spectra. Math. Z., 249(4):903–944, 2005.
  • M. Basterra and M. A. Mandell. Homology of $E_n$ ring spectra and iterated $THH$. Algebr. Geom. Topol., 11(2):939–981, 2011.
  • A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations. Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin, 1972.
  • M. Ching and J. E. Harper. Derived Koszul duality and TQ-homology completion of structured ring spectra. \verb=arXiv:1502.06944 [math.AT]=, 2015.
  • M. Ching and J. E. Harper. Higher homotopy excision and Blakers-Massey theorems for structured ring spectra. Adv. Math., 298:654–692, 2016.
  • E. Dror. A generalization of the Whitehead theorem. In Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971), pages 13–22. Lecture Notes in Math., Vol. 249. Springer, Berlin, 1971.
  • E. Dror and W. G. Dwyer. A long homology localization tower. Comment. Math. Helv., 52(2):185–210, 1977.
  • W. G. Dwyer, H. R. Miller, and J. Neisendorfer. Fibrewise completion and unstable Adams spectral sequences. Israel J. Math., 66(1-3):160–178, 1989.
  • B. Fresse. Lie theory of formal groups over an operad. J. Algebra, 202(2):455–511, 1998.
  • B. Fresse. Koszul duality of operads and homology of partition posets. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory, volume 346 of Contemp. Math., pages 115–215. Amer. Math. Soc., Providence, RI, 2004.
  • P. G. Goerss. On the André-Quillen cohomology of commutative ${\bf F}\sb 2$-algebras. Astérisque, (186):169, 1990.
  • T. G. Goodwillie. Calculus. III. Taylor series. Geom. Topol., 7:645–711, 2003.
  • J. E. Harper. Homotopy theory of modules over operads in symmetric spectra. Algebr. Geom. Topol., 9(3):1637–1680, 2009. Corrigendum: Algebr. Geom. Topol., 15(2):1229–1237, 2015.
  • J. E. Harper. Bar constructions and Quillen homology of modules over operads. Algebr. Geom. Topol., 10(1):87–136, 2010.
  • J. E. Harper. Homotopy theory of modules over operads and non-$\Sigma$ operads in monoidal model categories. J. Pure Appl. Algebra, 214(8):1407–1434, 2010.
  • J. E. Harper and K. Hess. Homotopy completion and topological Quillen homology of structured ring spectra. Geom. Topol., 17(3):1325–1416, 2013.
  • M. Hovey, B. Shipley, and J. H. Smith. Symmetric spectra. J. Amer. Math. Soc., 13(1):149–208, 2000.
  • N. J. Kuhn. Localization of André-Quillen-Goodwillie towers, and the periodic homology of infinite loopspaces. Adv. Math., 201(2):318–378, 2006.
  • N. J. Kuhn. Goodwillie towers and chromatic homotopy: an overview. In Proceedings of the Nishida Fest (Kinosaki 2003), volume 10 of Geom. Topol. Monogr., pages 245–279. Geom. Topol. Publ., Coventry, 2007.
  • N. J. Kuhn. Adams filtration and generalized Hurewicz maps for infinite loopspaces. \verb=arXiv:1403.7501 [math.AT]=, 2014.
  • N. J. Kuhn and L. A. Pereira. Operad bimodules and composition products on André-Quillen filtrations of algebras. Algebr. Geom. Topol., 17(2):1105–1130, 2017.
  • R. McCarthy and V. Minasian. On triples, operads, and generalized homogeneous functors. \verb=arXiv:math/0401346v1 [math.AT]=, 2004.
  • H. R. Miller. The Sullivan conjecture on maps from classifying spaces. Ann. of Math. (2), 120(1):39–87, 1984. Correction: Ann. of Math. (2), 121(3):605-609, 1985.
  • D. Pavlov and J. Scholbach. Homotopy theory of symmetric powers. Homology Homotopy Appl., 20(1):359–397, 2018.
  • L. A. Pereira. Goodwillie calculus in the category of algebras over a spectral operad. 2013. Available at: \verb=http://math.mit.edu/~luisalex/=.
  • L. A. Pereira. Cofibrancy of operadic constructions in positive symmetric spectra. Homology Homotopy Appl., 18(2):133–168, 2016.
  • D. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin, 1967.
  • C. Rezk. Spaces of Algebra Structures and Cohomology of Operads. PhD thesis, MIT, 1996. Available at \verb=http://www.math.uiuc.edu/~rezk/=.
  • S. Schwede. An untitled book project about symmetric spectra. 2007,2009. Available at: \verb=http://www.math.uni-bonn.de/people/schwede/=.
  • S. Schwede. On the homotopy groups of symmetric spectra. Geom. Topol., 12(3):1313–1344, 2008.
  • B. Shipley. A convenient model category for commutative ring spectra. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory, volume 346 of Contemp. Math., pages 473–483. Amer. Math. Soc., Providence, RI, 2004.