## Tbilisi Mathematical Journal

- Tbilisi Math. J.
- Volume 8, Issue 2 (2015), 41-47.

### Difference cordiality of product related graphs

R. Ponraj, S. Sathish Narayanan, and R. Kala

#### Abstract

Let $G$ be a $\left(p,q\right)$ graph. Let $f:V\left(G\right)\to \left\{1,2,\dots ,p\right\}$ be a function. For each edge $uv$, assign the label $\left|f(u)-f(v)\right|$. $f$ is called a difference cordial labeling if $f$ is an injective map and $\left|e_{f} \left(0\right)-e_{f} \left(1\right)\right|\leq 1$ where $e_{f} \left(1\right)$ and $e_{f} \left(0\right)$ denote the number of edges labeled with $1$ and not labeled with $1$ respectively. A graph which admits a difference cordial labeling is called a difference cordial graph. In this paper, we investigate the difference cordiality of torus grids $C_{m}\times C_{n}$, $K_{m}\times P_{2}$, prism, book, mobius ladder, Mongolian tent and $n$-cube.

#### Article information

**Source**

Tbilisi Math. J., Volume 8, Issue 2 (2015), 41-47.

**Dates**

Received: 7 May 2014

Accepted: 6 April 2015

First available in Project Euclid: 12 June 2018

**Permanent link to this document**

https://projecteuclid.org/euclid.tbilisi/1528769005

**Digital Object Identifier**

doi:10.1515/tmj-2015-0009

**Mathematical Reviews number (MathSciNet)**

MR3343673

**Zentralblatt MATH identifier**

1311.05171

**Subjects**

Primary: 05C78: Graph labelling (graceful graphs, bandwidth, etc.)

**Keywords**

Torus grids Prism M$\ddot{o}$bius ladder

#### Citation

Ponraj, R.; Narayanan, S. Sathish; Kala, R. Difference cordiality of product related graphs. Tbilisi Math. J. 8 (2015), no. 2, 41--47. doi:10.1515/tmj-2015-0009. https://projecteuclid.org/euclid.tbilisi/1528769005