Rocky Mountain Journal of Mathematics

The Story of a Topological Game

Gary Gruenhage

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 36, Number 6 (2006), 1885-1914.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181069351

Digital Object Identifier
doi:10.1216/rmjm/1181069351

Mathematical Reviews number (MathSciNet)
MR2305636

Zentralblatt MATH identifier
1141.54020

Citation

Gruenhage, Gary. The Story of a Topological Game. Rocky Mountain J. Math. 36 (2006), no. 6, 1885--1914. doi:10.1216/rmjm/1181069351. https://projecteuclid.org/euclid.rmjm/1181069351


Export citation

References

  • A.V. Arhangel'skiǐ, Classes of topological groups, Russian Math. Surv. 36 (1981), 151-174 (in English); Uspekhy Mat. Nauk 36 (1981), 127-146 (in Russian).
  • Z. Balogh, S.W. Davis, W. Just, S. Shelah and P. Szeptyczki, Strongly almost disjoint sets and weakly uniform bases, Trans. Amer. Math. Soc. 352 (2000), 4971-4987.
  • A. Bouziad, The Ellis theorem and continuity in groups, Topology Appl. 50 (1993), 73-80.
  • --------, Coincidence of the upper Kuratowski topology with the co-compact topology on compact sets, and the Prohorov property, Topology Appl. 120 (2002), 283-299.
  • C. Costantini, On a problem of Nogura about the product of Fréchet-Urysohn $\langle\alpha_4\rangle$-spaces, Comment. Math. Univ. Carolin. 40 (1999), 537-549.
  • C. Costantini and P. Simon, An $\alpha\sb 4$, not Fréchet product of $\alpha_4$ Fréchet spaces, Topology Appl. 108 (2000), 43-52.
  • A. Dow, Two classes of Fréchet-Urysohn spaces, Proc. Amer. Math. Soc. 108 (1990), 241-247.
  • A. Dow and J. Steprans, Countable Fréchet $\alpha_1$ spaces may be first-countable, Arch. Math. Logic 32 (1992), 33-50.
  • V.A. Efimov and G.I. Čertanov, On subspaces of $\Sigma$-products of intervals, Comment. Math. Univ. Carolin. 19 (1978), 569-592 (in Russian).
  • F. Galvin and A.W. Miller, $\gamma$-sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145-155.
  • F. Garca, L. Oncina and J. Orihuela, Network characterization of Gul'ko compact spaces and their relatives, J. Math. Anal. Appl. 297 (2004), 791-811.
  • S. García-Ferreira and R.A. González-Silva, Topological games defined by ultrafilters, IV Iberoamer. Conf. on Topology and Its Appl., Topology Appl. 137 (2004), 159-166.
  • S. García-Ferreira, R.A. González-Silva and A.H. Tomita, Topological games and product spaces, Comment. Math. Univ. Carolin. 43 (2002), 675-685.
  • J. Gerlits, Some properties of $C(X)$ II, Topology Appl. 15 (1983), 255-262.
  • J. Gerlits and Zs. Nagy, Some properties of $C(X)$ I, Topology Appl. 14 (1982), 151-161.
  • M. Granado, On the Moving Off Property and weak additivity of local connectedness and metrizability, Ph.D. Dissertation, Auburn University, 2004.
  • M. Granado and G. Gruenhage, Baireness of $C_k(X)$ for ordered $X$, Comment. Math. Univ. Carol. 47 (2006), 103-111.
  • G. Gruenhage, Continuously perfectly normal spaces and some generalizations, Trans. Amer. Math. Soc. 224 (1976), 323-338.
  • --------, Infinite games and generalizations of first-countable spaces, Gen. Topology Appl. 6 (1976), 339-352.
  • --------, Covering properties on $X^2\sm\Delta$, $W$-sets, and compact subsets of $\Sigma$-products, Topology Appl. 17 (1984), 287-304.
  • --------, Games, covering properties and Eberlein compacts, Topology Appl. 23 (1986), 291-297.
  • --------, A note on the product of Fréchet spaces, Topology Proc. 3 (1978), 109-115.
  • --------, A note on Gul'ko compact spaces, Proc. Amer. Math. Soc. 100 (1987), 371-376.
  • G. Gruenhage and D.K. Ma, Baireness of $C_k(X)$ for locally compact $X$, Topology Appl. 80 (1997), 131-139.
  • G. Gruenhage and P.J. Szeptycki, Fréchet-Urysohn for finite sets, Topology Appl. 151 (2005), 238-259.
  • --------, Fréchet-Urysohn for finite sets, II, Topology Appl., to appear.
  • J.E. Hart and K. Kunen, On the regularity of the topology of separate continuity, Proc. Janos Bolyai Math. Soc. 8th Inter. Topology Conf. (Gyula, 1998), Topology Appl. 123 (2002), 103-123.
  • M. Hrušák, Selectivity of almost disjoint families, Acta Univ. Carolin.-Math. Phys. 41 (2000), 13-21.
  • A.S. Kechris, Classical descriptive set theory, Springer-Verlag, New York, 1995.
  • C. LaFlamme, Filter games and combinatorial properties of strategies, in Collection: Set theory (Boise, ID, 1992-1994), Contemp. Math., vol. 192, Amer. Math. Soc., Providence, RI, 1996, pp. 51-67.
  • D.K. Ma, The Cantor tree, the $\gamma$-property, and Baire function spaces, Proc. Amer. Math. Soc. 119 (1993), 903-913.
  • R.A. McCoy and I. Ntantu, Completeness properties of function spaces, Topology Appl. 22 (1986), 191-206.
  • A. Miller, On $\lambda^\p$-sets, Topology Proc. 28 (2004), 179-187.
  • T. Nogura, The product of $\langle \alpha_i\rangle$-spaces, Topology Appl. 21 (1985), 251-259.
  • P. Nyikos, The Cantor tree and the Fréchet-Urysohn property, Ann. New York Acad. Sci. 552 (1989), 109-123.
  • --------, Classes of compact sequential spaces, in Set theory and its applications (Toronto, ON, 1987), Lecture Notes in Math., vol. 1401, Springer, Berlin, 1989, pp. 135-159.
  • --------, Subsets of $^\omega\omega$ and the Fréchet-Urysohn and $\alpha_i$-properties, Topology Appl. 48 (1992), 91-116.
  • --------, Moving off collections and spaces of continuous functions, in preparation.
  • R.C. Olson, Bi-quotient maps, countably bi-sequential spaces, and related topics, Gen. Topology Appl. 4 (1974), 1-28.
  • E. Reznichenko and O. Sipacheva, Fréchet-Urysohn type properties in topological spaces, groups and locally convex vector spaces, Moscow Univ. Math. Bull. 54 (1999), 33-38.
  • D. Shakmatov, $\alpha_i$-properties in Fréchet-Urysohn topological groups, Topology Proc. 15 (1990), 143-183.
  • P.L. Sharma, Some characterizations of $W$-spaces and $w$-spaces, Proc. Amer. Math. Soc. 83 (1981), 793-801.
  • K. Tamano, Products of compact Frchet spaces, Proc. Japan Acad. Math. Sci. 62 (1986), 304-307.
  • R. Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), 193-223.
  • S. Todorčević, Trees and linearly ordered sets, in Handbook of set-theoretic topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 235-293.
  • --------, Some applications of $S$ and $L$ combinatorics, in The work of Mary Ellen Rudin (Madison, WI, 1991), Ann. New York Acad. Sci. 705 (1993), 130-167.
  • M.L. Wage, Weakly compact subsets of Banach spaces, in Surveys in general topology (G.M. Reed, ed.), Academic Press, New York, 1980, pp. 479-494.
  • P.L. Zenor, Some continuous separation axioms, Fund. Math. 90 (1975/76), 143-158.