Real Analysis Exchange

Henstock-Stieltjes Integrals Not Induced by Measure

D. K. Ganguly, Suppriya Pal, and Lee Peng Yee

Full-text: Open access

Abstract

The present paper concerns with the introduction of a new type of generalized Stieltjes integral with an integrator function which depends on multiple points in a division and cannot be induced by a measure. Some properties of this integral were studied.

Article information

Source
Real Anal. Exchange, Volume 26, Number 2 (2000), 853-860.

Dates
First available in Project Euclid: 27 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.rae/1214571372

Mathematical Reviews number (MathSciNet)
MR1844398

Zentralblatt MATH identifier
1016.26011

Subjects
Primary: 26A39: Denjoy and Perron integrals, other special integrals

Keywords
Henstock Integral $\delta$-find division $GR_K$ integral Saks-Henstock Lemma $g^k$-variation

Citation

Pal, Suppriya; Ganguly, D. K.; Yee, Lee Peng. Henstock-Stieltjes Integrals Not Induced by Measure. Real Anal. Exchange 26 (2000), no. 2, 853--860. https://projecteuclid.org/euclid.rae/1214571372


Export citation

References

  • U. Das and A. G. Das, Convergence in k-th variation and $RK_k$ integrals, J. Austral. Math. Soc. Ser A 31 (1981), 163–174.
  • A. G. Das, Mahadev Chandra Nath, and Gokul Sahu, Generalized Henstock Stieltjes Integral, Bull. Inst. Math., Acad. Sinica, 26 (1998), 61–75.
  • P. Y. Lee, Lanzhou Lectures on Henstock integration, World Scientific 1989.
  • A. M. Russell, Functions of bounded k-th variation, Proc. London Math. Soc. (3) 26 (1973), 547–563.
  • A. M. Russell, Stieltjes-type integrals, J. Austral. Math. Soc. Ser A 20 (1975), 431–448.