Pacific Journal of Mathematics

On the existence of capillary free surfaces in the absence of gravity.

Jin Tzu Chen

Article information

Source
Pacific J. Math., Volume 88, Number 2 (1980), 323-361.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779519

Mathematical Reviews number (MathSciNet)
MR607983

Zentralblatt MATH identifier
0483.49036

Subjects
Primary: 49F10
Secondary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]

Citation

Chen, Jin Tzu. On the existence of capillary free surfaces in the absence of gravity. Pacific J. Math. 88 (1980), no. 2, 323--361. https://projecteuclid.org/euclid.pjm/1102779519


Export citation

References

  • [0] W. Blaschke, Kreis und Kugel, Walter de Gruyter and Co., Berlin, 1956.
  • [1] P. Concus and R. Finn, On the behavior of a capillary surface in a wedge, Proc. Nat. Acad. Sci , 63 (1969), 292-299.
  • [2] P. Concus and R. Finn, On a class of capillary surfaces, J. d'Analyse Math., 23 (1970), 65-70.
  • [3] P. Concus and R. Finn,On capillary free surfaces in the absence of gravity, Acta Math., 132 (1974), 177-198.
  • [4] R. F. De Mar, A simple approach to isoperimetric problem in the plane, Math. Magazine, 48 (1975), 1-12.
  • [5] P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976.
  • [6] R. Finn, Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature, J. d'Analyse Math., (1965), 139-160.
  • [7] R. Finn,A note on capillary free surfaces, Acta Math., 132 (1974), 199-205.
  • [8] R. Finn, Capillarity phenomena, Uspekhi Mat. Nauk, Vol. 29, 4 (178),(1974).
  • [9] R. Finn, Existence and non-existence of capillary surfaces, Manuscripta Math., Vol.
  • [10] R. Finn and E. Giusti, On nonparametric surfaces of constant mean curvature, Ann. Scu. Norm. Sup., Pisa, Ser IV, Vol. IV, No. 1, (1977).
  • [11] R. Finn and E. Giusti,Non-existence and existence of capillary surfaces, Manuscripta Math., Vol.
  • [12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York-Heidelberg, 1977.
  • [13] E. Guisti, Boundary value problems for nonparametric surfaces of prescribed mean curvature, Ann. Scu. Norm. Sup., Pisa, Ser. IV, Vol. HI, No. 3, (1976),501-548.
  • [14] E. Guisti,Minimal Surfaces and Functions of Bounded Variation, Notes on Pure Math., Australian National Univ., Canberra, 1977.
  • [15] E. Guisti, On the equation of surfaces of prescribed mean curvature.--Existence and uniqueness without boundary conditions, to appear.
  • [16] R. Osserman, A Survey of Minimal Surfaces, Van Nostrand Reinhold, New York, 1969.
  • [17] R. Osserman,The isoperimetric inequality, Bulletin of the American Math. Soc, Vol.
  • [18] J. Serrin, The Dirichlet problem for surfaces of constant mean curvature, Proc. London Math. Soc, (3) 21 (1970), 361-384.