Proceedings of the Japan Academy, Series A, Mathematical Sciences

Quasi traveling waves with quenching in a reaction-diffusion equation in the presence of negative powers nonlinearity

Yu Ichida and Takashi Okuda Sakamoto

Full-text: Open access

Abstract

The quasi traveling waves with quenching of $u_{t} = u_{xx} + (1-u)^{-\alpha}$ for $\alpha \in 2 \mathbf{N}$ are considered. The existence of quasi traveling waves with quenching and their quenching rates are studied by applying the Poincaré compactification.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 96, Number 1 (2020), 1-6.

Dates
First available in Project Euclid: 25 December 2019

Permanent link to this document
https://projecteuclid.org/euclid.pja/1577264416

Digital Object Identifier
doi:10.3792/pjaa.96.001

Mathematical Reviews number (MathSciNet)
MR4047569

Subjects
Primary: 35C07: Traveling wave solutions 34C05: Location of integral curves, singular points, limit cycles 34C08: Connections with real algebraic geometry (fewnomials, desingularization, zeros of Abelian integrals, etc.)

Keywords
Quasi traveling wave with quenching Poincaré compactification

Citation

Ichida, Yu; Okuda Sakamoto, Takashi. Quasi traveling waves with quenching in a reaction-diffusion equation in the presence of negative powers nonlinearity. Proc. Japan Acad. Ser. A Math. Sci. 96 (2020), no. 1, 1--6. doi:10.3792/pjaa.96.001. https://projecteuclid.org/euclid.pja/1577264416


Export citation

References

  • J. Carr, Applications of centre manifold theory, Applied Mathematical Sciences, 35, Springer-Verlag, New York, 1981.
  • F. Dumortier, J. Llibre and J. C. Artés, Qualitative theory of planar differential systems, Universitext, Springer-Verlag, Berlin, 2006.
  • C. Kuehn, Multiple time scale dynamics, Applied Mathematical Sciences, 191, Springer, Cham, 2015.
  • K. Matsue, Geometric treatments and a common mechanism in finite-time singularities for autonomous ODEs, J. Differential Equations 267 (2019), no. 12, 7313–7368.
  • K. Matsue, On blow-up solutions of differential equations with Poincaré-type compactifications, SIAM J. Appl. Dyn. Syst. 17 (2018), no. 3, 2249–2288.