Proceedings of the Japan Academy

On the weak definability in set theory

Gaisi Takeuti

Full-text: Open access

Article information

Source
Proc. Japan Acad., Volume 38, Number 2 (1962), 43-46.

Dates
First available in Project Euclid: 20 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195523492

Digital Object Identifier
doi:10.3792/pja/1195523492

Mathematical Reviews number (MathSciNet)
MR0162704

Zentralblatt MATH identifier
0104.24201

Subjects
Primary: 02.63

Citation

Takeuti, Gaisi. On the weak definability in set theory. Proc. Japan Acad. 38 (1962), no. 2, 43--46. doi:10.3792/pja/1195523492. https://projecteuclid.org/euclid.pja/1195523492


Export citation

References

  • [1] K. Godel: The Consistency of the Axiom of Choice and of the Generalized Continuum-hypothesis with the Axioms of Set Theory, Revised ed., Princeton, (1951).
  • [2] H. J. Keisler: Theory of models with generalized atomic formulas, J. Symbolic Logic, 25, 1-26 (1960).
  • [3] R. Montague and R. L. Vaught: Natural models of set theories, Fund. Math., 47, 219-242 (1959).
  • [4] G. Takeuti: Remarks on Cantor's absolute, J. Math. Soc. Japan, 13, 197-206 (1961).
  • [5] G. Takeuti: Remarks on Cantor's absolute. II. Proc. Japan Acad., 37, 437-439 (1961).
  • [6] G. Takeuti: On the theory of ordinal numbers, J. Math. Soc. Japan, 9, 93-113 (1957).
  • [7] A. Tarski and R. L. Vaught: Arithmetical extensions of relational systems, Composition Math., 13, 81-102 (1957).
  • [8] A. Tarski, A. Mostowski, and R. M. Robinson: Undecidable Theories, Amsterdam (1953).