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We refer to [_4J and [5 as to the notions and notations through-
out this paper. Here we restate some of them. A "set theory"
means a set theory in the first order predicate calculus, containing
only the predicate e, logical symbols, bound variables and finitely or
infinitely many individual constants. If T is a set theory in this
sense containing ao, a,.., as individual constants, we call T a set
theory with a0, a,.... Let T be a set theory with a0, a,.., and Br
be the class consisting of all {x}?I(x, a0, ax,...), where {x}?;(x, a0, a,...)
contains only logical symbols, the predicate , bound variables and
ao, a,.... [}I(X, ao, a,...) will be abbreviated as {x}I(x) if no confu-
sion is to be feared. T is called ’definite’, if it satisfies the following
conditions: 1) T is complete. (I.e. for any closed formula I (which,
more precisely, should be written as ;(a0, a,...)) either
belongs to T.) 2) If :xI(x) belongs to T, then there exists a formula
x() such that xy((x)A3(y)l--x=y)and :x(i(x)A(x)) belong
to T.

Let {x}i(x) and {x}(x) belong to Br. We say ’{x}5(x) belongs to the
same class with {x}?I(x) relative to T’, if and only if
belongs to T. The class which contains {x}l(x)is written ({x}i(x))
and {x}l(x) is said to represent the class. A class ({x}i(x))is said to
be definite with respect to T, if 5xi(x) and Fxy(i(x)AI(y)]x=y)
belong to T. A(T) is defined to be the set of all the definite classes.
Let ({x}i(x)) and ({x}(x)) be two elements of A(T). Then

is defined to mean that ’5x:y(I(x)A(y)Axey) belongs to T’.
In [5 we considered a set theory To(a). It contains all the

elements of a set a in C (=’Cantor’s Absolute’) as individual con-
stants, and consists of all the formulas which are true in C. Here
we consider the set theory Tc(On) which contains all ordinal numbers
as individual constants.

A set in C is called weakly definable (or a weakly definable set)
if it is definable in Tc(On).

We present the following two statements as the first and the
second weak definability principles:

1. Every set is weakly definable.
2. Every non-empty weakly definable set contains a weakly
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definable set as an element.
It is clearly seen that, if V=L of GSdel [lJ holds, then both

of the weak definability principles also hold. Further, it is clear
that the first weak definability principle implies the second one. In
this paper we shall show that the second weak definability principle
implies the first one and the axiom of choice (in the strong form).

In the following we shall assume the second weak definability
principle.

Proposition 1. Tc(On) is definite.
Proof. Tc(On) is clearly complete. Suppose x?t(x,o) belongs

to Tc(On). Then a set x consisting of all z’s such that
(z, )AVy((y, a)1--r(y):> r(z)) (where r(a) is the rank of a) is weakly
definable. By the second weak definability principle, there exists a
weakly definable set z belonging to x. Let {x}(x, fl) represent the
definite class which defines z. Then I(z, a)A3(z, fl) holds. Thus we
see that VyVz(3(y, fl) A(z, fl) 1 Y-- z) and z(I(z, fl) A 93(z, fl)) belong
to T(On).

By this and the proposition proved in [5, we have
Proposition 2. Let a,..., a, be elements of A(Tc(On)) represented

by {x}i(x, a),..., [x}i(x, a) respectively. Then (a,..., a) is satis-
fied in (A(Tc(On)), e rv(o)} if and only if

:x...:x((x, )A... A(Xn, )A(X,." ", X))
belongs to Tc(On).

Let Co be the class of all the weakly definable sets.
Proposition 3. For any elements c,..., Cn Of Co, ;(c,’’ ", c) holds

in Co if and only if it holds in C. (In other word, C is an arith-
metical extension of Co (cf. 7_).)

Proof. It is easily seen that (Co, e} (where e means co)is
isomorphic to (A(Tc(On)), c(On)}" For simplicity we shall identify
the corresponding elements. Let c,..., c be elements of Co. Then

(c,..., c.) is satisfied in (Co, e}.
_--> ?I(c,. c) is satisfied in (A(Tc(On)), .o)}.-_ :x. .:x((x, )/... A(n, )A’(X,’. X)),

where [x},)i(x, a) represents c(1 i _< n), belongs to Tc(On) (by Pro-
position 2).

.4_._ rXl. ./rXn([l(Xl, 01)/ /[n(Xn, On)/(Xl, Xn))
is satisfied in (C,

<_--> ?I(c., c) is satisfied in (C,
In a well-known way we can define a formula ,(a, n, x, fl) with

the following properties:
1 ,(a, n, x, fl) is constructed by the predicate e, logical symbols,

bound variables and free variables a, n,x and / only.
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(2) ’For any a,x, and any formula ;(x, fl)with only free vari-
ables x and ,

(a, r:, , ) x a/ a(x, ),
where ri stands for the GSdel number of the formula ?i(cf. [2]).
Moreover we can define (j, x) such that

(j(n, j(a, fl)), x) (R(a), n, x, fl) (n-- r),
where j is an isomorphism of On to On(el. P in [1, p. 29] or j in [6]).

Let x be an element of C0. Then there exists a definite [y}I(y, fl)
such that I(x, ). By means of [3], there exists a such that x and
fl belong to the set R(a) of all x with r(x)<a, and <R(a), e()} is a
model of Tc(R(a)). Then <C, e } can be considered as an arithmetical
extension of <R(a), (}. Let n be rI and a0 be j(n,j(a, fl)). Then
we have

Thus we see that, for any x eCo,
((,)y((,y)- x=y))

is true (i.e. is satisfied in <C, e}). By Proposition 3 this is also true
in C0. Since above x is an arbitrary element of C0.

Vxa((a, x)AVy((a, y)]-- x-- y))
is true in Co. Using Proposition 3 again we see that

is also true in C. This implies that every set is weakly definable.
Let x correspond to the least a such that

(, x)Vy((, y)l--x-y).
Then we see that the axiom of choice holds.

Remark. It is clearly seen that, if VL, then there exists a
weakly definable (even definable) set which is not contained in L.
(For the proof, consider the set

{x x LAVy(r(y) <r(x) [-- ye L)}.)
Here the author wishes to give some remarks on [4] and [5].
1. The conclusion of [5] is merely a special case of Theorem

5.2 of Montague-Vaught’s paper [3].
2. Dana Scott pointed out that ’Tc is not maximal in the sense

of [4]’ is simply proved without using V--L as follows:
Suppose Tc be maximal. A formula ?I(a) is defined to be ’a is

a super-complete model of Zermelo-Fraenkel’s set theory and the
theory, which is satisfied in <a, e a> is maximal’. Let a0 be the
minimam set satisfying ?I(a0) and To be the complete theory which
is satisfied in <a0, e,,}. Then a0 is definable in To, hence T0 To,
which is a contradiction.

We had better say that the main result of [4] is this:
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The complete set theories with V--L and a regular model are well
ordered by the embedding relation -4. Note in passing that ’the
degree of unsolvability of T’ ’the degree of unsolvability of T’,
if T -4 T.

3. By the similar argument as in 2, we have the following
proposition.

There exists a theory T such that T-4 T and
Vxy(xeyA’y is a super-complete model of T’).

4. Also we have the following proposition.
There exists an ordinal a0 such that R(a0) is a natural model of

Tc and C is not an arithmetical extension of R(a0).
Proof. If there does not exist any such ordinal, then in virtue

of Sandwich Theorem of [-2 T is characterized by the following
conditions on T:

If a< and R(a) and R(fl) are natural models of T, then R()
is an elementary extension of R(a).

x(xeR(a)A’R(a) is an natural model of T’).
Hence follows a contradiction by Theorem 1, II of
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