Osaka Journal of Mathematics

Toric varieties whose canonical divisors are divisible by their dimensions

Osamu Fujino

Full-text: Open access

Abstract

We totally classify the projective toric varieties whose canonical divisors are divisible by their dimensions. In Appendix, we show that Reid's toric Mori theory implies Mabuchi's characterization of the projective space for toric varieties.

Article information

Source
Osaka J. Math., Volume 43, Number 2 (2006), 275-281.

Dates
First available in Project Euclid: 6 July 2006

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1152203941

Mathematical Reviews number (MathSciNet)
MR2262336

Zentralblatt MATH identifier
1127.14046

Subjects
Primary: 14M25: Toric varieties, Newton polyhedra [See also 52B20]
Secondary: 14E30: Minimal model program (Mori theory, extremal rays)

Citation

Fujino, Osamu. Toric varieties whose canonical divisors are divisible by their dimensions. Osaka J. Math. 43 (2006), no. 2, 275--281. https://projecteuclid.org/euclid.ojm/1152203941


Export citation

References

  • O. Fujino: Notes on toric varieties from Mori theoretic viewpoint, Tohoku Math. J. (2) 55 (2003), 551--564.
  • O. Fujino: On the Kleiman-Mori cone, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 80--84.
  • O. Fujino and S. Payne: Smooth complete toric threefolds with no nontrivial nef line bundles, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 174--179.
  • A. Hattori: Elliptic genera, torus orbifolds and multi-fans, II, preprint, math.AT/0501392.
  • A. Hattori and M. Masuda: Elliptic genera, torus manifolds and multi-fans, Internat. J. Math. 16 (2005), 957--998.
  • S. Kobayashi and T. Ochiai: Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31--47.
  • T. Mabuchi: Almost homogeneous torus actions of varieties with ample tangent bundle, Tohoku Math. J. (2) 30 (1978), 639--651.
  • M. Reid: Decomposition of toric morphisms, arithmetic and geometry, Vol. II, 395--418, Progr. Math., 36, Birkhäuser Boston, MA, 1983.
  • S. Payne: A smooth, complete threefold with no nontrivial nef line bundles, preprint, math.AG/0501204.