Open Access
2013 Modular Ax–Lindemann–Weierstrass with Derivatives
Jonathan Pila
Notre Dame J. Formal Logic 54(3-4): 553-565 (2013). DOI: 10.1215/00294527-2143853

Abstract

In a recent paper I established an analogue of the Lindemann–Weierstrass part of Ax–Schanuel for the elliptic modular function. Here I extend this to include its first and second derivatives. A generalization is given that includes exponential and Weierstrass elliptic functions as well.

Citation

Download Citation

Jonathan Pila. "Modular Ax–Lindemann–Weierstrass with Derivatives." Notre Dame J. Formal Logic 54 (3-4) 553 - 565, 2013. https://doi.org/10.1215/00294527-2143853

Information

Published: 2013
First available in Project Euclid: 9 August 2013

zbMATH: 1355.11078
MathSciNet: MR3091671
Digital Object Identifier: 10.1215/00294527-2143853

Subjects:
Primary: 03C64 , 11J91

Keywords: Ax–Schanuel , modular function , o-minimal structure

Rights: Copyright © 2013 University of Notre Dame

Vol.54 • No. 3-4 • 2013
Back to Top