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Modular Ax–Lindemann–Weierstrass with Derivatives

Jonathan Pila

To Anand Pillay on his 60th birthday

Abstract In a recent paper I established an analogue of the Lindemann–
Weierstrass part of Ax–Schanuel for the elliptic modular function. Here I extend
this to include its first and second derivatives. A generalization is given that
includes exponential and Weierstrass elliptic functions as well.

1 Introduction

Schanuel’s conjecture (see Lang [9, p. 30]) captures the expected transcendence
properties of values of the exponential function. It is open in general but encom-
passes various known results, such as the Lindemann–Weierstrass theorem: If alge-
braic numbers a1; : : : ; an are linearly independent over Q, then exp a1; : : : ; exp an
are algebraically independent over Q. Schanuel also made the analogue of his
conjecture in the differential field setting (see Ax [1]). This was subsequently
proved by Ax in [1]. The result, known as “Ax–Schanuel,” encompasses in partic-
ular a statement corresponding to the Lindemann–Weierstrass theorem: Suppose
that W is an irreducible algebraic variety over C, with function field C.W /. If
a1; : : : ; an 2 C.W / are linearly independent over Q modulo constants (which is to
say that there is no nontrivial relation of the form

Pn
iD1 qiai D c; qi 2 Q; c 2 C),

then the functions exp a1; : : : ; exp an on W are algebraically independent over
C (even over C.W /). This statement I call “Ax–Lindemann–Weierstrass” for the
exponential function.

Let j W H! C be the modular function, whereH is the complex upper half-plane.
In the recent paper Pila [15], I proved a result concerning algebraic dependencies
among the compositions of j with algebraic functions. It is an analogue for the j -
function of the Ax–Lindemann–Weierstrass statement and asserts, roughly speaking,
that all algebraic dependencies among nonconstant functions j.a1/; : : : ; j.an/, for
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ai 2 C.W /, an algebraic function field, come from modular (i.e., GLC2 .Q/) relations
among the functions ai .

In this paper I extend this result to include j 0 and j 00, where 0 denotes differenti-
ation with respect to � 2 H. It is well known (see, e.g., Bertrand and Zudilin [5])
that j 000 2 Q.j; j 0; j 00/, while, by a result of Mahler [10] (or see [5]), the functions
j.�/; j 0.�/; j 00.�/ on H are algebraically independent over C.�/. The result of this
paper says that, for compositions of these three functions with algebraic functions,
all algebraic dependencies again come from modular relations.

To frame the result, consider an algebraic function field C.W /, where W � Cm
is some irreducible algebraic variety. If a1; : : : ; an 2 C.W / have the property that
a�.P / 2 H for some P 2 W , then the compositions j.a�/ may be considered
simultaneously as functions in some neighborhood of P on W , that is, on W \ B
where B is some open ball containing P . In this situation, a1; : : : ; an 2 C.W /
will be called geodesically independent if the a� are nonconstant and there are no
relations of the form

a� D ga�

where � ¤ � and g 2 GLC2 .Q/ acts by fractional linear transformations. (The C
indicates positive determinant, the condition required for such a transformation to
preserve H.)
Theorem 1.1 Suppose that C.W / is an algebraic function field and that

a1; : : : ; an 2 C.W /
take values inH at P 2 W and are geodesically independent. Then the 3n-functions

j.a1/; : : : ; j.an/; j 0.a1/; : : : ; j
0.an/; j 00.a1/; : : : ; j

00.an/

(considered as functions on W locally near P ) are algebraically independent over
C.W /.
Note that, if some a� is a constant (in H), then j.a�/ is algebraic over C, while if
some relation a� D ga� holds where � ¤ � and g 2 GL2.Q/C, then j.a�/ and
j.a�/ are related by a modular equation and so are algebraically dependent (overQ).
So the result is sharp.

This paper is devoted to proving Theorem 1.1, and a generalization which includes
the exponential andWeierstrass}-functions, using an elaboration of the method used
in [15]. That method uses o-minimality (see van den Dries [22] or the foundational
papers by Pillay and Steinhorn [18], [19] and Knight, Pillay, and Steinhorn [8]) and
employs in particular the counting theorem of Pila and Wilkie [16, Theorem 1.10]
(as refined in [14, Theorem 3.5]), in contrast to the differential field methods of
Ax in [1] (and to the differential geometric arguments of Ax in [2]). To apply this
result requires that the restriction j W F ! C of j to the usual fundamental domain
F D ¹z 2 H W jRe.z/j � 1=2; jzj � 1º for SL2.Z/nH be definable in an o-minimal
structure over R (for the definition see [16]). The well-known q-expansion of j.�/
(where q D exp.2�i�/; see, e.g., Serre [20]) shows that j W F ! C is definable in
Ran;exp, a fact first observed by Peterzil and Starchenko in [12] as a consequence of
their definability result for }� .z/ as a function of both variables (for a generalization
of Ax–Lindemann–Weierstrass in a different direction see Bertrand and Pillay [4],
and for a generalization of Schanuel’s conjecture encompassing the values of j , exp,
and Weierstrass }-functions derived from the generalized Grothendieck conjecture
on periods see Bertolin [3]).
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2 Generalization and Reformulation

By using the functions a1; : : : ; an to determine a mapping W ! W 0 � Cn we
can always reduce to the case where a1; : : : ; an are the coordinate functions on W .
Theorem 1.1 is thus equivalent to the following version, in which �1; : : : ; �n are the
coordinate functions on Cn,W � Cn is an irreducible algebraic variety defined over
C with W \Hn ¤ ;, and

�1; : : : ; �n

are the functions on W induced by �1; : : : ; �n.

Theorem 2.1 With the notation (and assumptionW \Hn ¤ ;) as above, suppose
that �1; : : : ; �n are geodesically independent. Then the 3n-functions

j.�1/; : : : ; j.�n/; j 0.�1/; : : : ; j
0.�n/; j 00.�1/; : : : ; j

00.�n/

(defined locally) on W are algebraically independent over C.W /.

Definition 2.2 Let n;m; ` be nonnegative integers. Let X D Cn � E1 � � � � �
Em � G` where Ei are elliptic curves over C corresponding to lattices ƒi � C
with Weierstrass }-functions }i . Let ƒ D ƒ1 ˚ � � � ˚ ƒm � Cm. Let
U D UX D Hn � Cm � C`. Let W � CnCmC` be an irreducible algebraic
variety having a nonempty intersection with U . Let

�1; : : : ; �n; z1; : : : ; zm; �1; : : : ; �`

be the coordinate functions on CnCmC`, and let

�1; : : : ; �n; z1; : : : ; zm; �1; : : : ; �`

be their images in C.W /. A subset of the coordinate function, which for simplicity
we take to be

�1; : : : ; �� ; z1; : : : ; z�; �1; : : : ; ��;

where 0 � � � n; 0 � � � m; 0 � � � `, will be called geodesically independent
if all of the following conditions hold.

1. The functions �1; : : : ; �� ; are nonconstant, and there are no relations of the
form �a D g�b where a ¤ b and g 2 GL2.Q/C. If � D 0 we consider this
condition to be satisfied.

2. The functions z1; : : : ; z� do not satisfy any system of � � h linearly in-
dependent equations

P�
jD1 ˛ij zj D ci ; i D 1; : : : ; � � h, h < �,

where the ˛ij ; ci 2 C and the h-dimensional linear subspace L defined
by
P�
jD1 ˛ij zj D 0; i D 1; : : : ; � � h, contains L \ ƒ as a lattice (i.e., of

full rank 2h). That is, the locus .z1; : : : ; z�/ is not contained in a coset of
the tangent space of a proper subtorus of Cm=ƒ. If � D 0 we consider this
condition to be satisfied.

3. The functions �1; : : : ; �� are Q-linearly independent modulo constants, that
is, there do not exist q1; : : : ; q� 2 Q, not all zero, such that

P�
iD1 qi�i 2 C.

If � D 0 we consider this condition to be satisfied.

Theorem 2.3 Let the notation (and assumption that W \ U ¤ ;) be as above. If
the functions

�1; : : : ; �� ; z1; : : : ; z�; �1; : : : ; ��
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in C.W / are geodesically independent, then the .3� C �C �/-functions
j.�1/; : : : ; j.��/; j 0.�1/; : : : ; j

0.��/; j 00.�1/; : : : ; j
00.��/;

}1.z1/; : : : ; }�.z�/; exp.�1/; : : : ; exp.��/
(defined locally) on W \ U are algebraically independent over C.W /.

Without the j 0- and j 00-functions, this result was established in [15]. Taking W
defined by �1 D �1 it establishes in particular the independence of exp from j; j 0; j 00,
a result of Mahler [10]. We show that Theorem 2.3 is equivalent to yet another
formulation.

Definition 2.4 A weakly special variety W � Cn � Cm � C` is a variety deter-
mined by some equations as in Definition 2.2; that is, each equation is of one of the
following forms:

1. �i D c where i 2 ¹1; : : : ; nº and c 2 C;
2. �i D g�j where i; j 2 ¹1; : : : ; nº are distinct and g 2 GLC2 .Q/;
3.
Pm
jD1 ˛ij zj D ci ; i D 1 : : : ; k, where ˛ij ; ci 2 C, and the linear space L

defined by
Pm
jD1 ˛ij zj D 0; i D 1; : : : ; k, contains L \ƒ as a lattice;

4.
P`
kD1 qk�k D c where qk 2 Q are not all zero and c 2 C.

A maximal proper weakly special variety is a weakly special variety that is not con-
tained in any proper weakly special variety of larger dimension.

In the following, overline variables

�1; : : : ; �� ; z1; : : : ; z�; �1; : : : ; ��

continue to denote the functions on the algebraic variety W induced by the coordi-
nates.

Theorem 2.5 Suppose thatW � CnCmC` is an irreducible algebraic variety with
W \Hn�CmC` ¤ ;, Y is a connected component ofW \Hn�CmC`, the functions

j.�1/; : : : ; j.��/; j 0.�1/; : : : ; j
0.��/; j 00.�1/; : : : ; j

00.��/;

}1.z1/; : : : ; }�.z�/; exp.�1/; : : : ; exp.��/
(defined locally) on Y are algebraically dependent over C.W /, and that Y is max-
imal with respect to these properties. Then W is a maximal proper weakly special
variety.

The proof of the equivalence of Theorems 2.3 and 2.5 is a variant of the argument
giving the equivalence of Theorems 9.1 and 9.2 in [15].

Proof that Theorem 2.5 implies Theorem 2.3 We show that Theorem 2.5 implies
the contrapositive of Theorem 2.3. Suppose that the functions in Theorem 2.3 are
algebraically dependent over C.W /. Then, by Theorem 2.5, W � V for some max-
imal proper weakly special variety V . Since the dependence involves the indicated
variables only, we may assume that the varietyW is a cylinder on these variables; the
other variables may be chosen arbitrarily. Then V is defined by equations involving
these variables, and so those variables are not geodesically independent.

Proof that Theorem 2.3 implies Theorem 2.5 Let W be maximal with the proper-
ties in the statement of Theorem 2.5. Take a maximal subset of the variables (which
for simplicity will be assumed to be an initial segment of each of the sets of variables,
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as in Definition 2.2) such that the corresponding functions are algebraically indepen-
dent over C.W /. By Theorem 2.3, each other variable is geodesically dependent on
these, so that W is contained in a proper weakly special variety V . By maximality,
V is maximal proper weakly special, and W D V .

3 Some Preliminaries

Notation 3.1 We introduce a group G whose real points g 2 G.R/ act on U
as biholomorphic self-maps. The group G is the Cartesian product of groups act-
ing on each factor of U . On the factor corresponding to the variable �i , the group
factor is G�i D SL2 acting by fractional linear transformations. On the factor cor-
responding to zi with lattice ƒi with Z-basis �i ; �i , the factor is Gzi

D G2a , with
t D .u; v/ 2 R2 acting on C as translation by u�i C v�i . On the factor correspond-
ing to the variable �i we put G�i

D Ga with s 2 R acting on C as translation by
2�is. Elements of G will be denoted g D .g1; : : : ; gn; t1; : : : ; tm; s1; : : : ; s`/.

Write z D .�1; : : : ; �n; z1; : : : ; zm; �1; : : : ; �`/, and write

… D .J1; : : : ; Jn; K1; : : : ; Kn; L1; : : : ; Ln; P1; : : : ; Pm; E1; : : : ; E`/:

The group G acts on the polynomial ring

C.z/Œ…�

as follows. For g D .g1; : : : ; gn; t1; : : : ; tm; s1; : : : ; s`/ 2 G with gi D . ai bi

ci di
/, and

F D F.z; : : : ; Ja; : : : ; Kb; : : : ; Lc ; : : : ; Pj ; : : : ; Ek ; : : :/ 2 C.z/Œ…�;
set

Fg D F
�
g�1z; : : : ; J˛; : : : ; .�cˇ �ˇ C aˇ /2Kˇ ; : : : ;

.�c
�
 C a
 /
4L
 � 2c
 .�c
�
 C a
 /

3K
 ; : : : ; Pj ; : : : ; Ek ; : : :
�
:

The reader may verify that Fgh D .Fg/h.
We may observe that the functions j.�i /; }j .zj /; exp.�k/ are invariant under

G.Z/, while the functions j 0.�i /; j 00.�i / transform in a simple manner:

j 0
�a� C b
c� C d

�
D .c� C d/2j 0.�/;

j 00
�a� C b
c� C d

�
D .c� C d/4j 00.�/C 2c.c� C d/3j 0.�/:

The functions j; j 0; j 00; exp are regular on their domains, while the }-functions
are meromorphic, taking values in OC D C [ ¹1º. Thus on U we define

� W U ! C3n � OCm � C`

by

�.�1; : : : ; �n; z1; : : : ; zm; �1; : : : ; �`/

D
�
j.�1/; : : : ; j.�n/; j

0.�1/; : : : ; j
0.�n/; j

00.�1/; : : : ; j
00.�n/;

}1.z1/; : : : ; }m.zm/; exp.�1/; : : : ; exp.�`/
�
:

Suppose that Y is a component of W \ U on which the component functions of
� are algebraically dependent over C.W /. So we have

F
�
�.Y /

�
D 0
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for some nonzero F in the polynomial ring in 3n C m C ` variables over C.W /.
Clearing denominators and representing elements of CŒW � as the function on W
induced by suitable elements of CŒz�, we have a polynomial, which we also denote
F 2 CŒz�Œ…�, such that

F
�
: : : ; �i ; : : : ; zj ; : : : ; �k ; : : : ; j.�i /; : : : ; j

0.�i /; : : : ;

j 00.�i /; : : : ; }j .zj /; : : : ; exp.�k/; : : :
�

vanishes identically for points of Y . That F gives a nontrivial algebraic dependence
of the functions on W now means that the coefficient polynomials in CŒz� do not all
vanish identically on W : for then the algebraic independence of j; j 0; j 00 shows that
F does not vanish identically on �.U /.

Suppose that g 2 G.Z/. Then gY is a component of gW \ U , and the transfor-
mation rules for the component functions of � imply that

Fg
�
�.gY /

�
D 0:

Suppose that F has coefficients that do not vanish identically on W . We show that
Fg has coefficients not vanishing identically on gW . (Note that the transformation
factors .�ci�i C ai / cannot cause problems as they do not vanish identically onW .)
Suppose that F has some terms involving theL
 -variables with nonzero coefficients.
Consider the terms of highest degree in the L
 -variables. Then the Fg -terms of the
same degree in the L
 -variables have coefficients of the form P.g�1z/M where P
is a coefficient of a similar term in F and M is a product of factors of the form
.�ci�i Cai /. If P is not identically vanishing onW , then P.g�1z/ is not identically
vanishing on gW , and we see that Fg gives a nontrivial relation of the component
functions of � on gY . If F has no terms involving L
 , the same argument applies to
terms of highest degree in the Kˇ -variables. If there are no such terms either, then
the coefficients of Fg are just of the form P.g�1z/ where P.z/ are the terms of F ,
and these are not all vanishing on W .

4 Rational Points of Definable Sets

Fix an o-minimal expansionR D .R; 0; 1;C;�; �; <; : : :/ of a real closed fieldR. By
definablewe will mean, in this section, definable (with parameters) in R, while semi-
algebraic will mean definable (with parameters) in .R; 0; 1;C;�; �; </. A definable
family will mean a definable set Z � Rn � Rm, considered as the family of sets
Zx � R

n, where x 2 Rm.
The field R contains the field Q of standard rational numbers. Our interest is

in rational points and, more generally, algebraic points of some bounded degree,
counted according to their height, of (definable) subsets of Rn. For any set Z � Rn
and T � 1 we can consider

Z.Q; T / D
®
.z1; : : : ; zn/ 2 Z W zi 2 Q;H.zi ; / � T; i D 1; : : : ; n

¯
where the height H.a=b/ D max.jaj; jbj/ for a rational number a=b in lowest terms
(gcd.a; b/ D 1). We then have the counting function N.Z; T / D #Z.Q; T /. More
generally, for a positive integer k we consider

Z.k; T / D
®
.z1; : : : ; zn/ 2 Z W

�
Q.zi / W Q

�
� k;H.zi / � T; i D 1; : : : ; n

¯
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whereH is the absolute multiplicative height on Q (which extends the above height
on Q; see Bombieri and Gubler [7, Definition 1.5.4]), and

Nk.Z; T / D #Z.k; T /:

Thus Z.1; T / D Z.Q; T / and N1.Z; T / D N.Z; T /.

Definition 4.1 ([15])

1. A block (of dimension w and degree d ) in Rn is a connected definable set
W � Rn of dimension w, regular of dimension w at every point, such that
there is a semialgebraic set A � Rn, of dimension w and degree at most d ,
regular of dimension w at every point, with W � A.

2. A block family (of dimension w and degree d ) is a definable family
W � Rn � Rm such that every fiber Wx ; x 2 Rm is a block of dimen-
sion w and degree at most d .

Cells of dimension zero are permitted: a point is a block.
The following is a further refinement of the result established in [16]. Examining

the proofs of the versions in Pila [14], [15], and the analytic ingredient Pila [13,
Proposition 4.1] shows that the proof works in any o-minimal structure over a real
closed field (not just overR). It also holds with the polynomial height H poly

k
(see [15,

Definition 3.3]) in place ofH .

Theorem 4.2 LetZ � Rn�Rm be a definable family of sets inRn, and let k � 1
and � > 0. There exists a finite set J of block families W � Rn � Rm � R`W

(depending on Z; k; �) in Rn such that
1. W.x;y/ � Zx for all .x; y/ 2 Rm �R`W , all W 2 J ;
2. Zx.k; T / is contained in the union of at most c.Z; k; �/T � fibers W.x;y/ of
W 2 J , for all x 2 Rm, T � 1.

Definition 4.3 The algebraic part of a set Z, denoted Alg.Z/, is the union of all
connected positive-dimensional semialgebraic sets contained in Z.

Since the positive-dimensional blocks provided by Theorem 4.2 are contained in the
algebraic parts of the corresponding fibers of Z, the result implies that, given k; �,

Nk
�
Z � Alg.Z/; T

�
� c.Z; k; �/T �

for any definable set Z. However, Theorem 4.2 provides more information in the
case where Z has “many” rational (or fixed-degree algebraic) points, meaning that
Nk.Z; T / � cT

ı for some positive k; c; ı. Then the theorem implies that, for any
ı0 < ı and positive c0, for large T , Z contains a block B with Nk.B; T / � c0T ı

0 .
For the purposes of the present paper, in order to consider all the sets and functions

involved as sets in real space we shall simply use the real and complex parts of all
the complex variables.

For the remainder of the paper, definable will mean definable (with parameters)
in Ran;exp.

5 Proof of Theorem 2.5

The proof is an elaboration of the proof of [15, Theorem 6.8]. Where the argument
is the same, the steps will merely be sketched; more detail will be given where the
present argument varies from the argument given in [15].
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Proof of Theorem 2.5 We have a component Y ofW \U on which the component
functions of � are algebraically dependent over C.W /. Thus we have F.�.Y // D 0
for some F 2 CŒz�Œ…� as above, whose coefficients (in CŒz�) do not all vanish onW ,
and Y is maximal with these properties. We may assume that no �i is constant onW
or the conclusion is immediate.

Suppose that g 2 G.Z/. As already observed, the components of � on gY are
also dependent over C.gW /, a dependence being given by Fg . Moreover, gY is also
maximal: for if gY were contained in Y 0, a component of W 0 \ U for some W 0,
then gW � W 0 as gY is Zariski-dense, and if W 0 has larger dimension than W ,
then g�1W 0 strictly containsW , Y � g�1Y 0 is a component of g�1W 0\U , and we
contradict the maximality of Y .

The idea of the proof is this. Observe that if G0 � G is definable, Y 0 � Y is
definable, and F 0 � U on which � is definable, then

S.G0; Y 0; F 0/ D
®
g 2 G0 W dim.gY \ F 0/ D dim.Y / and Fg

�
�.gY /

�
D 0

¯
is a definable set (the relation Fg.�.gY // D 0 needs to be checked only locally on Y
but then holds globally) to which we may apply Theorem 4.2. We will find such sets
with “many” rational (indeed, integer) points. By Theorem 4.2, we get a positive-
dimensional semialgebraic subset. This leads either to a larger set Y , contradicting
its supposed maximality, or to identities for the algebraic functions parameterizing
W . With enough such identities we show that W has the required form.

We may choose some subset of the variables (so that the induced functions are
a transcendence basis for C.W /) such that Y is parameterized by suitable algebraic
functions of these variables. As in [15], we can make exchanges among variables
that are dependent on each other so that certain types of dependencies are avoided.
Specifically, “dependent” � -variables depend only on “free” � -variables (and not
on any z- or �-variables); “dependent” z-variables depend on free � - and free z-
variables (but not on any �-variables); and dependent �-variables depend on free
.�; z; �/-variables.

Following such exchanges, Y is parameterized on the “free” variables

�f;i ; zf;j ; �f;k

by the algebraic functions

�f;a D 'a.�f;i /; zd;b D �d;b.�f;i ; zf;j /; �d;c D  c.�f;i ; zf;j ; �f;k/:

The parameterizing functions are defined in some connected open region for the
free variables. They may be analytically continued, perhaps with some branching,
throughout a region bounded by the loci determined by some � -variable (either free
or dependent) becoming real.

By further exchanges among � -variables if necessary we may assume that U has
a boundary where some free � -variable, say, �f;1, becomes real. Now the real loci
of a dependent variable �d;a may coincide with the real locus of �f;1; otherwise they
will intersect in a lower-dimensional set (these loci are real semialgebraic).

We can thus find a small neighborhood Uf;1 in the �f;1-plane, centered on its real
locus, and neighborhoods Uf;i ; i ¤ 1, of the other free variables, away from their
real loci, such that the product of that part of the �f;1-neighborhood with the other
neighborhoods is in U and at positive distance from the real loci of any dependent
�d;a-variables whose real loci do not coincide with that of �f;1, and such that all
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the parameterizing algebraic functions are bounded and univalent in the product re-
gion. We may assume further that the regions Uf;i for all the free variables other
than �f;1 are contained in a single fundamental domain for the respective actions (of
SL2.Z/;ƒi ;Z), while the �f;1-region contains infinitely many fundamental domains,
of which we fix one. We take a fundamental region for each dependent variable and
let F � be the product of these fundamental domains. Then � restricted to F � is
definable.

Now we generate various definable subsets of G.R/ containing “many” integer
points. Let U � be the product of Uf;i over the free variables. Let Y � be the graph
of the parameterizing functions on U �, a definable subset of Y . Choose relatively
prime integers a; c such that a=c is in the real �f;1-boundary ofU �. Choose b; d 2 Z
such that . a b

c d
/ 2 SL2.Z/. Let

G� D

²
g 2 G W gf;1 D

�
a b C ta

c d C tc

�
; t 2 R; gf;i D id; i ¤ 1; tf;j D 0; sf;k D 0

³
with no restrictions on the group elements corresponding to “dependent” variables.

For large t 2 N, the domain gf;1Ff;1 � U �1 , and the graph Y � over gf;1F �f;1 �Q
Uf;i over all other free variables may be “brought back” (at least partially) into

F � by an element of
Q
Gi .Z/ on the dependent variables of height bounded by a

suitable polynomial in jt j. This is established in [15, Section 5]. Accordingly, the
definable set

S.G�; Y �; F �/

has “many” integer points up to height T , for all large T .
Therefore this set contains a positive-dimensional semialgebraic subset, with all

points regular; moreover, according to Theorem 4.2, it contains such subsets which
(for large T ) contain “many” integer points.

We can find a smooth arc of a real algebraic curve g.t/ in G, parameterized by t
in an open interval containing an integer point t0, such that g.t/ 2 S.G�; Y �; F �/.
Then g.t/Y is parameterized on

�f;i ; zf;j ; �f;k

by

�d;a D gd;a.t/'a
�
gf;1.t/

�1�f;1; �f;i ; i ¤ 1
�
;

td;b.t/�b
�
gf;1.t/

�1�f;1; �f;i ; i ¤ 1; zf;j
�
;

sd;c.t/ c
�
gf;1.t/

�1�f;1; �f;i ; i ¤ 1; zf;j ; �f;k
�
;

and we have

0 D F
�
g.t/�1z; : : : ; j.�a/; : : : ;

�
�cb.t/�b C ab.t/

�2
j 0.�b/; : : : ;�

�c
 .t/�
 C a
 .t/
�4
j 00.�
 / � 2c
 .t/

�
�c
 .t/�
 C a
 .t/

�3
j 0.�
 /; : : : ; (�)

}j .zj /; : : : exp.�k/; : : :
�

holding identically for the free variables in some neighborhood, for real t in an inter-
val about t0, and so (considering the neighborhood for �f;1 to be at positive distance
from its real line) for all t in some complex neighborhood of t0 as well, and this
provides a new “free” variable which we use to try to “enlarge” W .
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Suppose that some dependent �� D �d;a exists. Suppose that, considered as a
function over C.�f;i /, the function

gd;a.t/'a
�
gf;1.t/

�1�f;1; �f;i ; i ¤ 1
�

is a nonconstant function of t . Then t is a nonconstant algebraic function of �� (over
C.�f;i /).

We now have an algebraic variety W 0 parameterized locally by

�f;i ; zf;j ; �f;k ; �
�

on which the component functions of � are algebraically dependent over an algebraic
extension of C.W 0/, as witnessed by (�) above. The dependence (�) is nontrivial,
as it restricts to a nontrivial dependence at t D t0, say. But then these functions are
algebraically dependent over C.W 0/ by field theory. Now W 0 has higher dimension
than W and intersects U in a component containing g.t0/Y . This contradicts the
maximality of g.t0/Y , which follows from the assumed maximality of Y .

Therefore the functions

gd;a.t/'a
�
gf;1.t/

�1�f;1; �f;i ; i ¤ 1
�

are constant. From here the argument is the same as in [15], and may be sketched as
follows.

First consider some dependent variable �d;a which (for some choice of the
�f;i ; i ¤ 1) does not have its real locus coincident with �f;1. Then we have chosen
U �
d;a

to be entirely contained in a single fundamental domain for Gd;a.Z/. We
may therefore assume that gd;a.t/ D 1 identically. (Just impose this condition on
S.G�; Y �; F �/.) Now gf;1.t/ is certainly nonconstant, and we conclude that 'a
does not depend on �f;1, so �d;a does not depend on �f;1. The same argument shows
that zd;b; �d;c do not depend on �f;1.

Next consider some dependent �d;a which has its real locus coincident with that
of �f;1 (for all choices of the �f;i ; i ¤ 1). Fix some choice of �f;i ; i ¤ 1. Now we
have that '.�/ D 'a.�; �f;i ; i ¤ 1/ satisfies an identity (locally, but then globally by
analytic continuation)

gd;a.t1/'
�
gf;1.t1/�

�
D gd;a.t0/'

�
gf;1.t0/�

�
; t1 ¤ t0; t0; t1;2 Z:

Rewrite this as
'.g�/ D h'.�/ (��)

(the resulting form of g; h is shown in [15]; they occur in positive-dimensional
semialgebraic families with “many,” i.e., a positive power of height, choices
g; h 2 SL2.Z/, and the g are parabolic with fixed point a=c).

Each choice of a rational a=c in the real �f;1-boundary ofU � gives rise to different
such identities, and it follows that ' is a real fractional linear transformation. This
is proved in [15] but may also be seen as follows. The two functions (��) of �
share the same branch points. So g preserves the set S of branch points of '. If
#S � 3, this restricts g to a finite set of possibilities. (An element of SL2.R/ is
determined by its action on 3 points.) It is not possible to have #S D 1. If #S D 2,
then for suitable k; l 2 SL2.C/ and c 2 C we have  D cl'.k�/ D �p=q as,
by Hurwitz’s formula, the function must be maximally ramified at the two points.
The identity now takes the form  g� D cl'kŒk�1gk� D Œlhl�1�cl'k D h� ,
where g� D k�1gk; h� D lhl�1. Then such g�, preserving ¹0;1º, are of the form
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� 7! ˛�˙1, and then the original g are of the form k. 0 ˛
�1=˛ 0 /k

�1 or k. ˇ 0
0 1=ˇ

/k�1.
This is not possible, as the g in (��) are parabolic, but the forms above are not.
So we are left to consider #S D 0. Then ' is a polynomial. Applying the same
argument to '�1 we see that ' is fractional linear. Since ' preservesH, we conclude
that ' 2 SL2.R/. Then ' cannot depend algebraically on the �f;i ; i ¤ 1. Hence
�d;a D '�f;1 for some ' 2 SL2.R/. Further, as the identities (��) in fact occur with
g; h 2 SL2.Z/, we can show, as in [15], that ' 2 GLC2 .Q/.

Repeating this argument, we see that any dependencies among the � -variables are
of the form �i D g�j for some g 2 GLC2 .Q/, and that .z; �/-variables do not depend
on � -variables.

Now we consider the dependencies among the .z; �/-variables. We may suppress
the � -variables, as there is no dependence on them, and now we are in exactly the
same situation as in [15] in seeking the form of a maximal algebraic W such that a
certain algebraic dependency holds on the functions }j .zj /, exp.�k/. Such W are
shown in [15] to be weakly special.

So we see that W is weakly special. On any proper weakly special variety the
constituent functions of � are certainly algebraically dependent (over Q). But on all
U they are algebraically independent. It follows that W is a maximal proper weakly
special variety, as required.

Remark 5.1 The proof does not require taking the same functions j; j 0; j 00 on
each �i ; we could take fi .�i /; f 0i .�i /; f

00
i .�i / for any nonconstant modular functions

f1; : : : ; fn.

Remark 5.2 The results of Mahler [10] were extended by Nishioka [11]. Nish-
ioka proves that a function f .z/ automorphic for a discontinuous subgroup G of
SL2.R/ with at least three limit points satisfies no algebraic differential equation of
second order over C.z; euz/, for any u 2 C. I thank the referees for suggesting that
I remark on the possibility of extending the present result to such functions. Ullmo
and Yafaev have a preprint [21] establishing “Ax–Lindemann–Weierstrass” for any
compact Shimura variety, thus including compact Shimura curves. It may well be
possible to extend their argument to include derivatives, which might enable one
to deal with the case where G is arithmetic. As the methods of [15] and [21] rely
on o-minimality and point counting, they seem to be inapplicable to nonarithmetic
groups. It seems interesting also to add suitable derivatives to the Ax–Lindemann–
Weierstrass results of [21] more generally, as well to the result in Pila and Tsimerman
[17] for the moduli space of abelian surfaces. The analogue of Mahler’s result for
Siegel modular forms is established by Bertrand and Zudilin [6], [5].
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