Notre Dame Journal of Formal Logic

Dual Gaggle Semantics for Entailment

Katalin Bimbó


A sequent calculus for the positive fragment of entailment together with the Church constants is introduced here. The single cut rule is admissible in this consecution calculus. A topological dual gaggle semantics is developed for the logic. The category of the topological structures for the logic with frame morphisms is proven to be the dual category of the variety, that is defined by the equations of the algebra of the logic, with homomorphisms. The duality results are extended to the logic of entailment that includes a De Morgan negation.

Article information

Notre Dame J. Formal Logic, Volume 50, Number 1 (2009), 23-41.

First available in Project Euclid: 19 January 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03B47: Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics) {For proof-theoretic aspects see 03F52}
Secondary: 03F05: Cut-elimination and normal-form theorems 18C50: Categorical semantics of formal languages [See also 68Q55, 68Q65]

entailment relevance logics gaggle theory topological duality theory sequent calculus cut-free proofs


Bimbó, Katalin. Dual Gaggle Semantics for Entailment. Notre Dame J. Formal Logic 50 (2009), no. 1, 23--41. doi:10.1215/00294527-2008-025.

Export citation


  • [1] Anderson, A. R., and N. D. Belnap, Jr., Entailment. The Logic of Relevance and Necessity, Vol. I, Princeton University Press, Princeton, 1975.
  • [2] Anderson, A. R., N. D. Belnap, Jr., and J. M. Dunn, Entailment. The Logic of Relevance and Necessity, Vol. II, Princeton University Press, Princeton, 1992.
  • [3] Belnap, N., "Life in the undistributed middle", pp. 31--41 in Substructural Logics (Tübingen, 1990), edited by K. Došen and P. Schroeder-Heister, vol. 2 of Studies in Logic and Computation, Oxford University Press, New York, 1993.
  • [4] Belnap, N. D., Jr., and J. R. Wallace, "A decision procedure for the system $E\sb\overlineI$" of entailment with negation, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 11 (1965), pp. 277--89.
  • [5] Bimbó, K., "Admissibility of cut in $LC$" with fixed point combinator, Studia Logica, vol. 81 (2005), pp. 399--423.
  • [6] Bimbó, K., "Functorial duality for ortholattices and De Morgan lattices", Logica Universalis, vol. 1 (2007), pp. 311--33.
  • [7] Bimbó, K., "$LE^\,t_\rightarrow$", $LR^\circ_ \!\overset\wedge\sim$", $LK$ and cutfree proofs, Journal of Philosophical Logic, vol. 36 (2007), pp. 557--70.
  • [8] Bimbó, K., "Relevance logics", pp. 723--89 in Philosophy of Logic, edited by D. Jacquette, vol. 5 of Handbook of the Philosophy of Science, edited by D. Gabbay, P. Thagard, and J. Woods, Elsevier, Amsterdam, 2007.
  • [9] Bimbó, K., and J. M. Dunn, "Relational semantics for Kleene logic and action logic", Notre Dame Journal of Formal Logic, vol. 46 (2005), pp. 461--90.
  • [10] Bimbó, K., and J. M. Dunn, Generalized Galois Logics. Relational Semantics of Nonclassical Logical Calculi, vol. 188 of CSLI Lecture Notes, CSLI Publications, Stanford, 2008.
  • [11] Birkhoff, G., and O. Frink, Jr., "Representations of lattices by sets", Transactions of the American Mathematical Society, vol. 64 (1948), pp. 299--316.
  • [12] Clark, D. M., and B. A. Davey, Natural Dualities for the Working Algebraist, vol. 57 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1998.
  • [13] Davey, B. A., and H. A. Priestley, Introduction to Lattices and Order, 2d edition, Cambridge University Press, New York, 2002.
  • [14] Dunn, J. M., "A `Gentzen system' for positive relevant implication", abstract, The Journal of Symbolic Logic, vol. 38 (1973), pp. 356--57.
  • [15] Dunn, J. M., Relevance logic and entailment, 1st edition, edited by D. M. Gabbay and F. Guenthner, D. Reidel, Dordrecht, 1986.
  • [16] Dunn, J. M., "Gaggle theory: An abstraction of Galois connections and residuation, with applications to negation, implication, and various logical operators", pp. 31--51 in Logics in AI (European Workshop JELIA, Amsterdam, 1990), edited by J. van Eijck, vol. 478 of Lecture Notes in Computer Science, Springer, Berlin, 1991.
  • [17] Dunn, J. M., and G. M. Hardegree, Algebraic Methods in Philosophical Logic, vol. 41 of Oxford Logic Guides, The Clarendon Press, New York, 2001. Oxford Science Publications.
  • [18] Dunn, J. M., and R. K. Meyer, "Combinators and structurally free logic", Logic Journal of the IGPL, vol. 5 (1997), pp. 505--37.
  • [19] Goldblatt, R., Topoi. The Categorial Analysis of Logic, 2d edition, vol. 98 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1984.
  • [20] Kripke, S. A., "The problem of entailment", abstract, The Journal of Symbolic Logic, vol. 24 (1959), p. 324.
  • [21] Mares, E. D., "Halldén-completeness and modal relevant logic", Logique et Analyse. Nouvelle Série, vol. 46 (2003), pp. 59--76.
  • [22] Negri, S., and J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge, 2001.
  • [23] Priestley, H. A., "Representation of distributive lattices by means of ordered Stone spaces", The Bulletin of the London Mathematical Society, vol. 2 (1970), pp. 186--90.
  • [24] Routley, R., and R. K. Meyer, "The semantics of entailment. I", pp. 199--243 in Truth, Syntax and Modality (Proceedings of the Temple University Conference on Alternative Semantics Philadelphia, 1970), edited by H. Leblanc, vol. 68 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1973.
  • [25] Stone, M. H., "Topological representations of distributive lattices and Brouwerian logics", Časopis pro p\v estování Matematiky a Fysiky, Čast matematická, vol. 67 (1937), pp. 1--25.
  • [26] Urquhart, A., "A topological representation theory for lattices", Algebra Universalis, vol. 8 (1978), pp. 45--58.
  • [27] Urquhart, A., "Duality for algebras of relevant logics", Studia Logica, vol. 56 (1996), pp. 263--76.