Kyoto Journal of Mathematics

Estimation of arithmetic linear series

Atsushi Moriwaki

Full-text: Open access


In this article, we introduce arithmetic linear series and give a general way to estimate them based on Yuan’s idea. As an application, we consider an arithmetic analogue of the algebraic restricted volumes.

Article information

Kyoto J. Math., Volume 50, Number 4 (2010), 685-725.

First available in Project Euclid: 29 November 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30]
Secondary: 11G50: Heights [See also 14G40, 37P30]


Moriwaki, Atsushi. Estimation of arithmetic linear series. Kyoto J. Math. 50 (2010), no. 4, 685--725. doi:10.1215/0023608X-2010-011.

Export citation


  • [1] H. Chen, Arithmetic Fujita approximation, preprint, arXiv:0810.5479v2 [math.AG]
  • [2] H. Chen, Positive degree and arithmetic bigness, preprint, arXiv:0803.2583v3 [math.AG]
  • [3] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakmaye, and M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), 607–651.
  • [4] P. Gruber, Convex and Discrete Geometry, Grundlehren Math. Wiss. 336, Springer, Berlin, 2007.
  • [5] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series, Ann. Sci. Ecole Norm. Sup. (4) 42 (2009), 783–835.
  • [6] A. Moriwaki, Continuity of volumes on arithmetic varieties, J. Algebraic Geom. 18 (2009), 407–457.
  • [7] A. Moriwaki, Continuous extension of arithmetic volumes, Int. Math. Res. Not. IMRN 2009, no. 19, 3598–3638.
  • [8] A. Moriwaki, Free basis consisting of strictly small sections, preprint, arXiv:0903.3778v2 [math.AG]
  • [9] A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), 405–411.
  • [10] A. Okounkov, “Why would multiplicities be log-concave?” in The Orbit Method in Geometry and Physics (Marseille, 2000), Progr. Math. 213, Birkhaüser, Boston, 2003, 329–347.
  • [11] X. Yuan, On volumes of arithmetic line bundles, Compos. Math. 145 (2009), 1447–1464.
  • [12] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), 187–221.