Estimation of arithmetic linear series

Atsushi Moriwaki

Abstract In this article, we introduce arithmetic linear series and give a general way to
estimate them based on Yuan’s idea. As an application, we consider an arithmetic ana-
logue of the algebraic restricted volumes.

0. Introduction

In their article [5], Lazarsfeld and Mustata propose general and systematic usage
of Okounkov’s idea (see [9], [10]) to study asymptotic behavior of linear series on
an algebraic variety. It is a very simple way, but it yields many consequences,
such as Fujita’s approximation theorem. Yuan [11, Theorem C] generalized this
way to the arithmetic situation, and he established the arithmetic version of
Fujita’s approximation theorem, which was also proved independently by Chen
[1, Theorem 5.2]. In this article, we introduce arithmetic linear series and give
a general way to estimate them based on Yuan’s idea. As an application, we
consider an arithmetic analogue of the algebraic restricted volumes.

0.1. Arithmetic linear series

Let X be a d-dimensional projective arithmetic variety, and let L be a continuous
Hermitian invertible sheaf on X. Let K be a subset of H°(X,L). The convex
lattice hull CL(K) of K is defined to be

CL(K):={z € (K)z ’ Im € Zso mxem K},
where (K)z is the Z-submodule generated by K and
mxK={x1+ - +xn|z1,...,2m € K}

We call K an arithmetic linear series of L if
(1) K =CL(K),
(2) —x € K for all x € K, and
(3) KC Bsup(z) ={s e H'(X, L) | [[$]lsup < 1}
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In the case where K = Bq,,(L) N HO(X, L), it is said to be complete. One of the
main results of this article is a uniform estimation of the number of points in the
arithmetic linear series in terms of the number of valuation vectors.

THEOREM A
Let v be the valuation attached to a good flag over a prime p (see Section 0.3(9)

for the valuation attached to the flag, and see Section 1.4 for the definition of a
good flag over a prime). If K # {0}, then we have
|[#v(K\ {0})logp — log #(K)]

o(L) + log(2pTk(K)z)
logp

< (1og(4p rk(K)z) + log(4) k HO((’)X)) rk(K)z,

where (L) is given by

deg(@ (A)"~* - & (D))
A : ample deg(AfiQ;l)

The idea for the proof of Theorem A is essentially the same as in Yuan [11], in
which he treated only the complete arithmetic linear series in my sense. A new
point is the usage of convex lattices, that is, a general observation for arithmetic
linear series. By this consideration, we obtain several advantages in applications.
For example, we have the following theorem, which is a stronger version of [11,
Theorem 3.3]. The arithmetic Fujita approximation theorem is an immediate
consequence of it.

THEOREM B
Let L be a big, continuous Hermitian invertible sheaf on X. For any positive e,
there is a positive integer ng =no(€) such that, for all n > ng,

log # CL(V,.) _ vol(L)

lim inf > —€
k—o0 ndkd - d ’

where Vi, = {51 - @ s, € H'(X,knL) | s1,...,5, € H(X,nL)} and CL(Vj.,)
is the convex lattice hull of Vi, in H°(X,knL) (for details, see Section 1.2).

0.2. Arithmetic analogue of restricted volume

For further applications, let us consider an arithmetic analogue of the restricted

volume on algebraic varieties. Let Y be a d’-dimensional arithmetic subvariety

of X; that is, Y is an integral closed subscheme of X such that Y is flat over

Spec(Z). Let L be a continuous Hermitian invertible sheaf on X. We denote
Image(H(X, L) — H(Y, L|y))

by H(X |Y,L). Let || - ||;i|;fquot be the the quotient norm of H°(X |Y,L) ®z R

induced by the surjective homomorphism

H(X,L)®;R— H*(X |Y,L)®zR
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and the norm ||-||sup on H(X, L) ®7R. We define Hyo (X | Y, L) and volguot (X |
Y,L) to be
ngot

(X |Y,L):={sc HOX | Y,L) | |Islloquoc <1}

sup,quot —

and

- _ log#H° (X |Y,mL
vOlguot (X | Y, L) :=limsup e# 3‘:;:;/(/d"| )

Note that ﬁguot(X | Y,L) is an arithmetic linear series of L|y. A continuous
Hermitian invertible sheaf I is said to be Y-effective if there is s € H(X, L)
with s|y # 0. Moreover, L is said to be Y-big if there are n, A, and M such
that n is a positive integer, A is an ample C*°-Hermitian invertible sheaf, M is
a Y-effective continuous Hermitian invertible sheaf, and nL = A+ M. The semi-
group consisting of isomorphism classes of Y-big continuous Hermitian invertible
sheaves is denoted by §1«\g(X ;Y). Then we have the following theorem, which is

a generalization of [2] and [11, Theorem 2.7, Theorem B].

THEOREM C

(1) If L is a Y-big continuous Hermitian invertible sheaf on X, then
volguot (X | Y, L) >0 and

_ _ log#H® (X |Y,mL
Ol (X | ¥.D) = lim 25 oo (X [Y,mL)

m—oo md//d’!

In particular, ;(;lquot(X |Y,nL) = nd,;(;lquot(X |Y,L).
(2) The function \aquot(X |Y, =)/ is concave on gi\g(X;Y); that is,
‘aquot (X | KZ + M)l/d/ 2 ‘aquot (X | Kz)l/d/ + \70\1qu0t (X | Yv M)l/dl
holds for any Y -big continuous Hermitian invertible sheaves L and M on X .

(3) If L is a Y-big continuous Hermitian invertible sheaf on X, then, for
any positive number €, there is a positive integer ng = ng(e) such that, for all

n 2 o,
. log#CL({Sl®"'®Sk|51,"'7skGngot(X|Yvnf)})
lim inf T
k—oo n k’d
< Volguot (X | Y, L) B
iy d/! )

where the conver lattice hull is considered in HY(X |Y,knL).
(4) If Xq is smooth over Q and A is an ample C°°-Hermitian invertible
sheaf on X, then

volguot (X | ¥, A) = vol(Y, Aly)

_ log#Image(H°(X,mA) — H°(X | Y, mA))
= lim - .
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Let C°(X) be the set of real-valued continuous functions f on X(C) such that
f is invariant under the complex conjugation map on X(C). We denote the
group of isomorphism classes of continuous Hermitian invertible sheaves on X
by Pic(X;C?). Let O : C°(X) — Pic(X;C°) be the homomorphism given by
E(f) = (OXanp(_f)‘ ) |Can)~
ISi\cR(X; CY) is defined to be
_ Pic(X;C%) @R
Picg(X;C°) := — (X507 @ : .
{Xi0(f) @ i| fi € COX),w: €R (Vi), 3o, wifi =0}
Let ~ : Pic(X;C%) — Picg(X;C°) be the natural homomorphism given by the
composition of homomorphisms
Pic(X;C°) — Pic(X;C°) @ R — Picg(X; C°).
Let Bigg(X;Y) be the cone in Picg(X;C?) generated by {v(I) | T € Big(X;Y)}.
Note that Bigg(X;Y) is an open set in Picg(X;CY) in the strong topology; that
is, Bigg(X;Y)NW is an open set in W in the usual topology for any finite-

dimensional vector subspace W of lsi\cR(X :CY%). The next theorem guarantees
that

Volquet (X | Y, —) : Big(X;Y) >R

/ot (X Y, =) Bigg(X;Y) — R, which can
be considered as a partial generalization of [6] and [7].

extends to a continuous function vol”

THEOREM D

There is a unique, positive-valued continuous function
Vol ot (X |V, =) : Bigg(X;V) =R

with the following properties.

(1) The following diagram is commutative:

volquot (X | Y,—)

Big(X;Y) R
g
;aguot (X ‘ Y_)
Big (X;V)
(2) @guot(X |Y, —)Ud/ 18 positively homogeneous and concave on EER(X;
Y'); that is,

\To\lguot(X | Y7 )‘m)l/d/ = )‘\To\lguot(X | Kx)l/d,a
ﬁguot(X | Y,r+ y)l/d/ > ‘aguot(X | Yax)l/dl + ‘aguot(X | Yay)l/d,

hold for all A€ Ry and x,y € EiER(X; Y).
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0.3. Conventions and terminology
We fix several conventions and the terminology for this article.

(1) Let M be a Z-module, and let A be a subsemigroup of M; that is,
z+y € A holds for all z,y € A. If 0 € A, then A is called a submonoid of M.
The saturation Sat(A) of A in M is defined by

Sat(A) :={x € M | nx € A for some positive integer n}.

It is easy to see that Sat(A) is a subsemigroup of M. If A= Sat(A), then A is
said to be saturated.

(2) Let K be either Q or R, and let V' be a vector space over K. A subset
C of V is called a convex set in V if tx + (1 —t)y € C for all z,y € C and t e K
with 0 <t <1. For a subset S of V| it is easy to see that the subset given by

{t181+-~-+tr8r|81,...7STES, tl,...,tTEsz t1+'~-+tT:1}

is a convex set. It is called the convex hull by S and is denoted by Convg (.S). Note
that Convg(S) is the smallest convex set containing S. A function f: C — R on
a convex set C' is said to be concave over Kif f(tx+(1—t)y) >tf(x)+(1—1t)f(y)
holds for any z,y € C and t € K with 0 <¢ <1.
(3) Let K and V be the same as in (2). A subset C of V is called a cone in

V' if the following conditions are satisfied:

(a) z+yeC for any z,y € C,

(b) Az € C for any z € C and X € Ky.
Note that a cone is a subsemigroup of V. Let S be a subset of V. The smallest
cone containing S, that is,

{Alal—&----—i-)\rar\al,...,areS, )\1,...,)\T€K>0},

is denoted by Coneg(.S). It is called the cone generated by S.

(4) Let K and V' be the same as in (2). The strong topology on V means
that a subset U of V' is an open set in this topology if and only if, for any finite-
dimensional vector subspace W of V over K, U N W is open in W in the usual
topology.

It is easy to see that a linear map of vector spaces over K is continuous in
the strong topology. Moreover, a surjective linear map of vector spaces over K
is an open map in the strong topology. In fact, let f: V — V' be a surjective
homomorphism of vector spaces over K, let U be an open set of V', and let W'
be a finite-dimensional vector subspace of V’ over K. Then we can find a vector
subspace W of V over K such that f induces the isomorphism f|y : W — W',
If we set U = Useker(s)(U + 1), then U is open and f(W NU)=W'n f(U), as
required.

Let V' be a vector subspace of V over K. Then the induced topology of V'
from Vcoincides with the strong topology of V’. Indeed, let U’ be an open set
of V' in the strong topology. We can easily construct a linear map f: V — V’
such that V' < V -1 V7 is the identity map. Thus f~%(U’) is an open set in V/,
and hence U’ = f~1(U’)|y~ is an open set in the induced topology.
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(5) A closed integral subscheme of an arithmetic variety is called an arith-
metic subvariety if it is flat over Spec(Z).

(6) Let X be an arithmetic variety. We denote the group of isomorphism
classes of continuous Hermitian (resp., C°°-Hermitian) invertible sheaves by
Pic(X;C%) (resp., Pic(X;C™)). Pic(X;C>) is often denoted by Pic(X) for sim-
plicity. An element of F/’i\cQ(X;CO) = P/’i\c(X;CO) ®z Q (resp., lsi\(:@(X;C'oo) =
Igi\c(X ;C°) ®7 Q) is called a continuous Hermitian (resp., C°°-Hermitian) Q-
invertible sheaf.

(7) A C*>°-Hermitian invertible sheaf A on a projective arithmetic variety X
is said to be ample if A is ample on X, the first Chern form ¢;(A) is positive on
X(C), and, for a sufficiently large integer n, H°(X,nA) is generated by the set

{s € H*(X,nA) | |Isllsup <1}

as a Z-module. Note that, for A, L € ISi\c(X; C>), if A is ample, then there is a
positive integer m such that mA + L is ample.

(8) Let L be a continuous Hermitian invertible sheaf on a projective arith-
metic variety X. Then Bg,, (L) is defined to be

Bsup(z) = {5 € HO(X,L)]R ’ ||S||sup < 1}
Note that H°(X,T) = H(X, L) N Beup(L).

(9) Let A be a Noetherian integral domain, and let ¢t ¢ A*. As [, 5,t"A=
{0}, for a € A\ {0} we can define ord;(a) to be

ordia(a) =max{n € Z>g|a €t"A}.
Let {0} =Py C Py C--- C Py be a chain of prime ideals of A. Let A; = A/P; for
1=0,...,d, and let p; : A;_1 — A; be natural homomorphisms, as follows:

Pd—
A:AQLA]_&-nd—}Ad,l&)Ad.

We assume that Py is a maximal ideal and that P;A;_; = Ker(p;) is a principal
ideal of A;_; for every i =1,...,d; that is, there is t; € A;_y with P;A;_1 =
t;A;—1. For a # 0, the valuation vector (v1(a),...,vq4(a)) of a is defined in the
following way:

a:=a and Vl(a) = OrdtlAO(al)'

If a1 € Ag,as € Ay,...,a; € A;—1 and vy (a),...,vi(a) € Z>o are given, then
—v;(a)

ait+1 := pi(ast; ) and Viti(a) :==ordy,,, 4, (@ig1)-
Note that the valuation vector (v1(a),...,vq(a)) does not depend on the choice
of tl,...,td.

Let X be a Noetherian integral scheme, and let
Y Yy=XDYVi DY, D---DYy

be a chain of integral subschemes of X. We say that Y. is a flag if Yy consists of
a closed point y and Y;4; is locally principal at y in Y; for all i =0,...,d—1. Let
A= 0Ox,y, and let P; be the defining prime ideal of ¥; in A. Then we have a chain
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Py C P C - C Pyof prime ideals as above, so that we obtain the valuation vector
(r1(a),...,v4(a)) for each a € A\ {0}. It is called the wvaluation vector attached
to the flag Y. and is denoted by vy (a) or v(a). Let L be an invertible sheaf on
X, and let w be a local basis of L at y. For each s € H(X, L), we can find
as € A with s =asw. Then vy (as) is denoted by vy (s). Note that vy (s) does
not depend on the choice of w.

1. Preliminaries

1.1. Open cones
Let K be either Q or R, and let V' be a vector space over K. A cone in V is said
to be open if it is an open set in V' in the strong topology (see Section 0.3(4)).

PROPOSITION 1.1.1
Let C be a cone in V. Then we have the following.
(1) C is open if and only if, for any a € C and x € V, there is g € K such
that a + dox € C'.
(2) Let f: V — V' be a surjective homomorphism of vector spaces over K.
(2.1) If C is open in V, then f(C) is also open in V'.
(2.2) If C+Ker(f) CC, then f~1(f(C))=C.

Proof

(1) If C is open, then the condition in (1) is obviously satisfied. Conversely, we
assume that, for any a € C' and x € V, there is §y € K< such that a + dpx € C.
First, let us see the following claim.

CLAIM 1.1.11
For any a € C and x € V, there is 6g € Ksg such that a + dxz € C holds for all
0 € K with 6] < dg.

Proof
By our assumption, there are 1,02 € K¢ such that a4+ d1z,a+ d2(—2) € C. For
0 € K with —dy < < 4y, if we set A= (04 91)/(d1 + J2), then 0 <A <1 and
0= )\51 + (1 — )\)(—52) Thus

Ab+612)+ (1= A)(b+02(—2)) =b+dz € C.

Therefore, if we put §o = min{dy,d2}, then the assertion of the claim follows. O
Let W be a finite-dimensional vector subspace of V over K, and let a € W N C.

Let e1,...,e, be a basis of W. Then, by Claim 1.1.1.1, there is §y € K¢ such
that a/n + de; € C holds for all ¢ and all § € K with 6| < §y. We set

U={zie1+ -+ anen | 21| < 80,s- -, |zn| <do}.
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It is sufficient to see that a + U C C'. Indeed, if v =211 + -+ + zne, € U, then

n

a+x= Z(a/n +xe;) € C.
i=1
(2) The first assertion follows from the fact that f is an open map (cf.
Section 0.3(4)). Clearly f~1(f(C)) 2 C. Conversely, let x € f~1(f(C)). Then
there are a € C with f(x) = f(a). Thus we can find u € Ker(f) such that z—a=1u
because f(xz —a)=0. Hence

r=a+ueC+Ker(f)CC.

To proceed with further arguments, we need the following two lemmas.

LEMMA 1.1.2
Let S and T be subsets of V.. Then

Coneg (S +T') C Coneg(S) + Coneg(T),

where S+T ={s+t|se€S, teT}. Moreover, if a € Z>o,t € T =>at € T holds,
then Coneg (S + T') = Coneg(S) + Coneg (T).

Proof

The first assertion is obvious. Let x € Coneg(S) + Coneg (7). Then there are
S1yeeeySp €8, t1,o. oyt €T, Ay A € Ko, and pq, ..., € Ksg such that
r=MAS1+ -+ A\eSp + p1t1 + -+ - + prtr. We choose a positive integer N with
NAi > p1+ -+ pr. Then

T = ()\1*M)(SlJFO)+/\2(52+0)+"'+>\r(5r+0)

N
+ (1/N)(s1 + Nt1) + -+ (up /N)(s1 + Nt,v) € Coneg (S +T)
because 0, Nty,...,Nt,» €T. ]
LEMMA 1.1.3
Let P be a vector space over Q, let x1,...,x,. € P, by,...,b,, €Q, and let A be
a (r x m)-matriz whose entries belong to Q. Let Aq,...,A\r € R>q with (Aq,...,

M)A =(b1,....bw). Ifz:=Xz1+- -+ Az, € P, then there are A, ..., \. € Q>
such that x = Njz1 + -+ XN.a, and (N,..., L) A= (by,...,bn). Moreover, if the
Ai’s are positive, then we can choose positive X, ’s.

Proof
If \; =0, then

e=Y Nr; and (Ao A Ao M)A = (b b))
J#i
where A’ is the ((r— 1) X n)-matrix obtained by deleting the ith row from A. Thus
we may assume that \; >0 for all i. Let eq,...,e, be a basis of (x1,...,2,,2)q.
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We set z; = Z]‘ Cij€j and x = Z]‘ djej (Cij €qQ, dj S Q) Then dj = Zi )\icij. Let
C = (¢;j). We consider linear maps fg : Q" — Q™" and fr : R” — R™*" given by

fo(st,. oy 80) = (51,..,8)(A,C)  and  fr(t1,...,tr) = (t1,...,t.)(A4,C).
Then fr(A1,---sAr) = (b1,-- o, b, d1,. .. dy); that is,
(b1, b, dy, ... dy) € fr(RT)NQ™ ™,
Note that fr(R") NQ™" = fu(Q") because
Q™" fo(Q") — (Q™"/ fo(Q")) ®o R
is injective and
Q™" f0(Q")) @ R = (Q"" ©g R)/(fo(Q") ®g R) =R™"/ fr(R").

Therefore there is (e1,...,e,) € Q" with fg(e1,...,er) = (b1,...,bm,d1,...,dy),
and hence

1(b17 7b7n.7d17" adn) f_1(0)+(ela'“7€r)7
Rl(bl, 7bm7d17" 9 ) fﬂgl(o) (61,...,67«).

In particular, 61(1)1,.. ybm,dy,...,dy) is dense in fR_l(bl,...,bm,dl,...,dn).
Thus as (A1,...,Ar) € fr (b1, .y by di, .., dy) DR, we have

S by by, dn) NRE g # 0

that is, we can find (\},..., ) € QLy with fo(\},...,A.) = (b1,...,bm,d1, ...,
d,). Hence

z=Nzi+ -+ XNz, and  (A,..., A )A=(b1,...,bn).

Next, we consider the following proposition.

PROPOSITION 1.1.4
Let P be a vector space over Q, and let V=P ®gR. Let C be a cone in P.
Then we have the following:

(1) Conegr(C)NP=C;

(2) if C is open, then Coneg(C) is also open;

(3) Zf D is a cone in P with 0 € D, then Coneg(C 4+ D) = Coneg(C) +
Coneg(D)

Proof
(1) Clearly C C Coner(C) N P. We assume that « € Coneg(C') N P. Then, by
Lemma 1.1.3, there are wq,...,w, € C and A\1,...,A\r € Qs with x = A\jw1+---+
Arwy, which means that x = A wy + - + Aw, € C.

(2) First, let us see the following: for a € C and x € P, there is g € Qs such
that a + éx € Coneg(C) for all 6 € R with |6] < dp. Indeed, by our assumption,
there is dp € Qs such that a + dpz € C. For § € R with [§| < dp, if we set
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A= (0 + d0)/200, then 0 <A <1 and 6 = AJp + (1 — A)(—=dp). Thus b+ oz =
)\(b + 5017) + (1 — /\)(b — 50$) € COHGR(O).

By Proposition 1.1.1(1), it is sufficient to see that, for a’ € Coneg(C) and
a2’ € V, there is a positive ¢’ € Ry with o’ + §’a’ € Coneg(C). We set o' =
Aar + -+ Aay (a1,...,a, €C) Ap,y.. o A €ERsp) and @' = ey + - + ppey,
(1,...,&n € P, p1,...,un €R). We choose A € Q such that 0 < A < A;. By the
above claim, there is dg € Qs such that (A/n)a; + dz; € Coner(C) for all j and
all 6 € R with |§] < dy. We choose 6’ € Rs such that [6'p;| < dy for all j. Then

a+dr=(\—Nay + Z)‘iai + Z(()\/n)al + 6'pjx;) € Coneg(C),
i>2 j=1
as required.
(3) This follows from Lemma 1.1.2. O

Let M be a Z-module, and let A be a subsemigroup of M. A is said to be open
if, for any a € A and = € M, there is a positive integer n such that na + = €
A. For example, let X be a projective arithmetic variety, and let m)(X ) be
the subsemigroup of lsl\(l(X ;) consisting of ample C'°°-Hermitian invertible
sheaves on X. Then m)(X) is open as a subsemigroup of lgi\c(X;C’oo) (ctf.
Section 0.3(7)).

PROPOSITION 1.1.5
Let v: M — M ®7Q be the natural homomorphism, and let A be subsemigroups
of M. Then we have the following.

(1) The cone Coneqg(t(A)) generated by t(A) is given by {(1/n)i(a) | n €
Z~gp, a € A}

(2) The saturation Sat(A) of A is equal to ¢'(Coneg(t(A)) (see Sec-
tion 0.3(1) for the saturation Sat(A) of A in M ).

(3) If A is open, then Coneg(L(A)) is an open set in M &z Q.

(4) If B is a submonoid of M, then

Coneg (¢(A + B)) = Coneg(:(A)) + Coneg(4(B)).

(5) Let f: A— R be a function on A. If there is a positive real number
e such that f(na) =ncf(a) for all n € Z>o and a € A, then there is a unique
function f: Coneg(t(A)) — R with the following properties:

(5.1) for=f.

(5.2) f(Ax)=A°f(x) for all \ € Qs and x € Coneg(t(A)).

Proof

(1) Let z € Coneg(t(A)). Then there are n,mq,...,m, € Zso and ay,...,a, € A
such that z = (my/n)c(ar) + -+ (m-/n)i(a,). Thus if we set a =mya; +---+
mya, € A, then x = (1/n)c(a). The converse is obvious.
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(2) Clearly :~!(Coneg(t(A)) is saturated, and hence
Sat(A) C ™" (Coneg(L(A)).
Conversely, we assume that x € 1 ~!(Coneg(¢(A4)). Then by (1), there are n € Z~q
and a € A such that «(x) = (1/n)i(a). Thus as t(nz —a) =0, there is n’ € Zsg
such that n'(nx — a) =0, which means that n'nx € A, as required.

(3) By Proposition 1.1.1(1), it is sufficient to show that, for any a' €
Coneg(:(A)) and 2’ € M ® Q, there is § € Qs such that o’ + 6z’ € Coneg(c(A)).
We can choose a € A, v € M, and positive integers n; and no such that o’ =
(1/n1)e(a) and 2’ = (1/n2)e(z). By our assumption, there is a positive integer n
such that na +x € A. Thus

nnia’ +nex’ = 1(na+ z) € L(A),
which yields a’ 4+ (ng/nni)z’ € Coneg(t(A)).
(4) By virtue of Lemma 1.1.2,
Coneg (1(A + B)) = Coneg (1(A) + ¢(B)) = Coneg (:(A)) + Coneg (:(B)).

(5) First, let us see the uniqueness of f . Indeed, if it exists, then

/1 1€, 1\e

i((5)u@) = (5) Fu@) = () f@.
By the above observation, in order to define f: Convg(:(A)) — R, it is suffi-
cient to show that if (1/n)i(a) = (1/n')e(a’) (n,n' € Zso and a,a’ € A), then
(I/n)ef(a) = (1/n")f(a’). As ¢(n'a —na’) =0, there is m € Zs( such that
mn’a =mna’. Thus

(mn/)*f(a) = f((mn')a) = f((mn)a’) = (mn) f(a),

which implies that (1/n)¢f(a) = (1/n)¢f(a’). Finally, let us see (5.2). We choose
positive integers n,ni,ng, and a € A such that A =ny/ne and x = (1/n)c(a).

Then
Fow) = F((5 - Yolma)) = (5-) fma) = () i o
=X () fla) =3 Fa)

1.2. Convex lattice

Let M be a finitely generated free Z-module. Let K be a subset of M. The
Z-submodule generated by K in M and the convex hull of K in Mi := M ®z R
are denoted by (K)z and Convg(K), respectively. For a positive integer m, the
m-fold sum m * K of elements in K is defined to be

mxK={x1+ - +xn|z1,...,2m € K}

We say that K is a convex lattice if

1
(K)yzN—(mx*xK)CK, that is, m(K)z N (mx K) CmK

m
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holds for all m > 1. Moreover, K is said to be symmetric if —x € K for all x € K.
Note that if K is symmetric, then Convg(K) is also symmetric.

PROPOSITION 1.2.1
Let K be a subset of M. Then we have the following.
(1) An equation (K)zNU,-_,(1/m)(m* K) = (K)z N Convg (K) holds.
(2) The following are equivalent:
(2.1) K is a convex lattice;
(2.2) K =(K)zNConvg(K);
(2.3) there are a Z-submodule N of M and a convex set A in Mg such
that K =N NA.

Proof
(1) Obviously (K)zNU,-_,(1/m)(m* K) C (K)z N Convg(K). We assume that
x € (K)z N Convg(K). Then there are ai,...,a; € K and pq,. .., € R>g such
that © = pyag + -+ wa; and gy + -+ =1. As z € (K)z C M, by using
Lemma 1.1.3 we can find Aq,..., \; € Q>¢ such that \y +---+ X =1 and z =
Arar + -+ Nag. Weset Ay =d;/m for i=1,...,l. Then, as dy +---+d; =m,
we have
po bt rdm (K)Zﬂ%(m*l().

(2) First let us see that (2.1) implies (2.2). Since K is a convex lattice, by
(1), K = (K)z N Convg(K).

It is obvious that (2.2) implies (2.3).

Finally we observe that (2.3) implies (2.1). First of all, note that (K); C N
and Convg(K) C A. Thus

(K)Zﬂ%(m*[() C(K)zNConvr(K)CNNA=K.

Let K be a subset of M. Then, by Proposition 1.2.1,
!
(K)z N U E(m*K):{xG (K)z | Im€Zso mzemxK}
m=1

is a convex lattice, so that it is called the conver lattice hull of K and is denoted
by CL(K). Note that the convex lattice hull of K is the smallest convex lattice
containing K. Let f: M — M’ be an injective homomorphism of finitely gener-
ated free Z-modules. Then it is easy to see that f(CL(K))= CL(f(K)). Finally,
we consider the following lemma. Ideas for the proof of the lemma can be found
in Yuan’s article [11, Section 2.3].

LEMMA 1.2.2
Let M be a finitely generated free Z-module, and let r: M — N be a homomor-
phism of finitely generated Z-modules. For a symmetric finite subset K of M,
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we have the following estimation:
(1.2.2.1) log #r(K) > log #(K) — log # (Ker(r) N (2% K)),
(1.2.2.2) log #r(K) <log#(2 * K) — log # (Ker(r) N K).

Moreover, if A is a bounded and symmetric convexr set in Mg and a is a real
number with a > 1, then

(1.2.2.3) 0 <log#(M NaA) —log#(M NA) <log([2a])rk M.

Proof

Let t € r(K), and fix sg € K with 7(sg) =¢. Then for any s € r~1(t) N K,
s—s9=8+(—s0) €Ker(r)N(2x K).

Thus
#(r ') NK) <#(Ker(r)N (2« K)).
Therefore
#E) = D #(r O NEK) < #(r(K))#(Ker(r) N (2% K)),
ter(K)

as required.
We set S =K + Ker(r) N K. Then r(S) =r(K) and S C 2 K. Moreover,
for all t € r(S),

#(Ker(r)NK) <#(Snr'(1)).
Indeed, if we choose sg € K with r(sg) =, then

so +Ker(r)Nn K C Snrt(t).

Therefore
#2xK) > #(S)= > #(r ()N S) = #(r(S))# (Ker(r) N K)
ter(S)
= #(T(K))#(Ker(r) N K),

as required.
We set n=[2a]. Applying (1.2.2.1) to the case where K = M N (n/2)A and
r: M — M/nM, we have

log#(Mﬁ (g)A) —log#(nMﬂ?* ((g)AmMD
<log #M/nM =log(n)rk M.
Note that a <n/2 and
#<an2* ((%)AmM)) < #(nM N (nANM))

=#(nM NnA)=#(MNA).
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Hence we obtain

0 <log#(M NaA)—log#(MNA)

§1og#(Mﬂ (g)A> —log#<nMﬂ2>k ((%)AﬁM)) <log(n)rk M.
O

1.3. Concave function and its continuity
Let P be a vector space over Q, and let V=P ® R. Let C' be a nonempty
open convex set in V. Let f: C NP — R be a concave function over Q (cf.
Section 0.3(2)).

We assume that P is finite-dimensional and d = dimg P. Let h be an inner
product of V. For x € V, we denote \/h(z,x) by ||z|n. Moreover, for a positive

number 7 and x € V, we set

U(:c,r):{yev | ly — 2| <r}.

PROPOSITION 1.3.1

For any x € C, there are positive numbers € and L such that U(z,e) CC and
|f(y) = f(2)] < Llly — 2||n for all y,z € U(xz,e) N P. In particular, there is a
unique concave and continuous function f: C' — R such that f|cmp =f.

Proof

The proof of this proposition is almost the same as [4, Theorem 2.2], but we need
a slight modification because x is not necessarily a point of P. Let us begin with
the following claim.

CLAIM 1.3.1.1
An equality f(t1z1+- - +tray) >t f(a1) +- -+t f () holds for any x1,...,x, €
cCnP andtl,...,tTeQZO with t1 4+ ---+1t,=1.

Proof

We prove it by induction on r. In the case where r = 1, 2, the assertion is obvious.
We assume that r > 3. If t; =1, then the assertion is also obvious, so that we
may assume that £; < 1. Then by using the hypothesis of induction,

t ¢
fltiay +- -+ toa,) = f t1m1+(1—t1)< 2 ottt a:r)
l_tl 1—t1

>ty f(xr) + (1— tl)f( t2t1 Tyt t_rfr)

> () + (1= ) (T2 S o S a)

:tlf(ml) + - +t7‘f($r>'
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CLAIM 1.3.1.2
There are x1,...,24+1 € CNP such that © is an interior point of Convg({z1,...,
Tay1})

Proof
Let us consider the function ¢ : C? — R given by

oY1, ya) =det(y1 — x,...,ya — ).

Then (C%)y = {(y1,---,vya) € C¥| d(v1,...,y4) # 0} is a nonempty open set, so
that we can find (21,...,24) € (C%)4 with x1,...,24 € P. Next, we consider

{xftl(xl —z)— - —tg(xg — ) | tl,...,td€R>0}ﬂC’.
This is also a nonempty open set in C. Thus there are z4,; € C N P and
t1,...,tg € Ryg with xg41 = —t1(x1 — ) — -+ - — tg(xqg — ), so that
_tiwr -+ taxa + Tata
1+ +tg+1
Thus z is an interior point of Convg({z1,...,2a+1}). O

CLAIM1.3.1.3

There is a positive number ¢; such that f(y) > —c; holds for all y € Convg ({1,
...,$d+1})ﬂp.

Proof
As y € Convg({z1,...,24+1}) N P, by Lemma 1.1.3, there are t1,...,t4+1 € Q>0
such that

t1+- - +itgp=1 and y=tix1+ - +tat1%d+1-
Thus by Claim 1.3.1.1,

fy)=ftizy + - +tap1Tay1)

>t f(z1) + - +lapi f(ar) = =t f(@)] = = taga] f(zat1)]
>—(|f(@)]+ -+ | f(@as1)]),
as required. O

Let us choose a positive number € and choose xy € P such that
U(z,4¢e) C Convg({z1,...,Zas1}
and xg € U(x,e) N P. Then
U(z,e) CU(xg,2€) CU(xg,3¢) CU(x,4€) C Convg({21,...,Td+1})-

CLAIM 1.3.1.4
There is a positive number cy such that | f(y)| < co holds for all y € U(xo,3¢) N P.
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Proof
As (2z9 —y) — o =z — y, we have 2z¢ — y € U(xg,3¢) N P, and hence

iy, Cro—yN L fly) | f(220—y)
fwo) = f(§+ =200 ) > L0 4 SER Y
Therefore

—c1 < fy) <2f(w0) — f(2x0 —y) < 2f(w0) + c1,

as required. O

Let y,z € U(x,€) N P with y # z. We choose a € Q with
€/2
€2,
Iz =yl
and we set w=a(z —y)+y. Then ¢/2 <|w — z||;, <e. Thus w € U(xg,3¢) N P.
Moreover, if we put ¢ty = 1/a, then

1<a<—5 41,
2 = ylln

z=(1—tg)y + tow, z—y=to(w—1y) and w—z=(1—1t)(w—1y).
As 12— ylln/llw — 2lln = fo/ (1  to), we have
f(z) = fly) _ F(A=to)y+tow) - fly) o (A —to)f(y) +tof(w) — f(y)

lz—ylln Iz = ylln 12 = yln
R () :(1_t0)f(w)—f(y)
1z —ylln |w—z|n
_ Jw) = (A= t0)f(y) +tof () _ f(w) = f()
|w—z|n w2
—202 —262 o —462
“w—zln T €2 €

Exchanging y and z, we obtain the same inequality, that is,

fly) = f(z)  —Ae
ly—zln — €
Therefore |f(2) — f(y)| < (4dez/€)|ly — z||n for all y,z € U(z,e) N P.

For the last assertion, note the following: Let {a,}52; be a Cauchy sequence
on C'N P such that z =1lim, .. an € C. Then, by the first assertion of Proposi-
tion 1.3.1, {f(an)}52, is also a Cauchy sequence in R, and hence f(z) is defined
by limy, .o f(an).

This concludes the proof of Proposition 1.3.1. (|

Next, we do not assume that P is finite-dimensional. Then we have the following
corollary.

COROLLARY 1.3.2
There is a unique concave and continuous function f : C'— R such that f|CmP =f.
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Proof
It follows from Proposition 1.3.1 and the following facts: If € V', then there is
a finite-dimensional vector subspace @ of P over Q with z € Q ® R. |

1.4. Good flag over a prime
In this subsection, we observe the existence of good flags over infinitely many
prime numbers.

Let X be a d-dimensional projective arithmetic variety. Let 7 : X — Spec(R)
be the Stein factorization of X — Spec(Z), where R is an order of some number
field F. A chain

Y Yy=XDYVi DY, D---DYy

of subschemes of X is called a good flag of X over a prime p if the following
conditions are satisfied.

(a) Y;’s are integral and codim(Y;) =i for ¢ =0, ...,d.

(b) There is P € Spec(R) such that Rp is normal, 7=!(P) =Yj, and the
residue field x(P) at P is isomorphic to F,,. In particular, Y7 is a Cartier divisor
on X.

(c) Yy consists of a rational point y over F,.

(d) Yi’s are regular at y for i =0,...,d.

(e) There is a birational morphism g : X’ — X of projective arithmetic vari-
eties with the following properties:

(e.1) p is an isomorphism over y;
(e.2) if Y/ is the strict transform of Y;, then Y is a Cartier divisor in
Y/  fori=1,...,d.

PROPOSITION 1.4.1

There are good flags of X owver infinitely many prime numbers. More precisely,
if we set Spg = {p € Spec(Z) | p splits completely in F' over Q}, then there is a
finite subset ¥ of Sp/q such that we have a good flag over any prime in Spg\ .

Proof

Let i : Y — X be a generic resolution of singularities of X such that Y is normal.
Let m: X — Spec(R) and 7 : Y — Spec(OF) be the Stein factorizations of X —
Spec(Z) and Y — Spec(Z), respectively. Then we have the commutative diagram

X Y
Spec(R) «—~— Spec(Op).

Let us choose a proper closed subset Z of X such that u: Y\ p='(Z)— X\ Z
is an isomorphism. We set F = u~!(Z). Let us choose a chain

Y/ =Y Xgpec(0p) SPeC(F) DYy D--- DYy
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of smooth subvarieties of Y Xgpec(0,) Spec(F) such that codim(Y;) =i —1 for
i=1,...,d—1and dim(YdL1 N (E Xgpec(Or) Spec(F))) <0. Let Y; be the Zariski
closure of Y/ in Y. Then there is a nonempty open set U of Spec(Op) such that p
is an isomorphism over U, Y1 =Y, Y5,...,Y;_1 are smooth over U, and Y;_1NE
is either finite or empty over U. Let e be the degree of Y;_1 N E over U. Note
that e might be zero. If we put

21 = {p € Spec(Z) | there is P € Spec(Op) \ U with pZ = PNZ},

then ¥ is a finite set. Let p € Sp)g \ X1 and P € Spec(Og) with pZ = PN Z.
Then P € U and the residue field at P is isomorphic to F,. By Weil’s conjecture
for curves,

p+1—-2gp< #(Ydfl ® K/(P))(Fp)’

where g is the genus of Y;;_,. Thus there is a finite set 35 such that, if p € Sp/g\
(X1UX9), then p+1—2g,/p > e, which means that there is x € (Yy—1 @ x(P))(Fp)
with = ¢ E. Since, for p € Sp/g \ (1 UX2),

YOYV1®k(P)D---DY4_1 ®@k(P)D{x}
is a good flag over p,
Xopu(Y1@k(P)) DD p(Ya1 @ k(P)) D {u(x)}

is also a good flag over p. |

2. Estimation of linear series in terms of valuation vectors

In this section, we consider a generalization of Yuan’s article [11]. Let us begin
with the following proposition, which is a key to Theorem 2.2.

PROPOSITION 2.1

Let X be a d-dimensional projective arithmetic variety, and fix a good flag Y. : X D
Y1 DY, D - DYy over a prime p. Let L be an invertible sheaf on X, let M
be a Z-submodule of H°(X,L), and let A be a bounded symmetric convex set
in HO(X,L)g. Let r: H°(X,L) — H°(Y1,Lly,) be the natural homomorphism,
M'=MnNHX,L-Y1), and 3=prk M. Then we have the following:

(2.1.1)  #vy, (r(M N A)\{0}) logp <log#(M N2BA) —log #(M' N BA)
and

(2.1.2) #vy, (r(MﬁA) \{O}) logp > log#(Mﬂ (1/6)A) —log#(M’ﬁ (Q/ﬁ)A),
where vy, is the valuation on Yy attached to a flagY; DYa D --- D Yy.

Proof

Let V be a vector space generated by r(M NA) in H°(Y:, Lly,) over F,. Note
that [5, Lemma 1.3] holds if Yy consists of a rational point over a base field. Thus
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#vy, (r(AN M)\ {0}) logp < #vy, (V'\ {0})logp
= dimp, (V') logp (. [5, Lemma 1.3])
=log #V.

Let us choose s1,...,51 € M N A such that r(s1),...,7(s;) forms a basis of V.
Let n be the rank of M, and let wq,...,w, be a free basis of M. Then V C
S Fpr(w;) in H(Y1, Ly, ), which implies [ <n. We set

S= {Zaisi a;=0,1,....p—1 (Vz)}

Then S maps surjectively to V. Moreover, S C M N BA because | <n. Thus
we get #V < #(r(M N BA)). Note that Ker(r|py : M — H°(Y1, Lly,)) = M'.
Therefore as 2% (M N FA) C M N2BA, by (1.2.2.2),

log #r(M N BA) <log#(M N2BA) —log#(M' N BA),

which shows (2.1.1).

Let W be a vector space generated by r(M N (1/8)A) in H°(Y1, L|y,) over
F,. Let us choose t1,...,ty € MN(1/6)A such that 7(¢1),...,r(ty) forms a basis
of W. In the same way as before, we have I’ <n. We set

T= {Zbiti bi=0,1,....p—1 (‘v’i)}.
Then TC M NA and W = #(T) C (M N A). Thus
v, (r(M 1 A)\ 0}) logp > oy, (W {0}) log

= dimg, (W) logp
— log #W
> log #r (M N (1/8)A).

On the other hand, as 2 (M 1 (1/8)A) C M N (2/8)A, by (1.2.2.1),

log #r (M1 (1/8)A) > log (M 1 (1/8)A) ~ log #(M' 1 (2/8)A),
as required for (2.1.2). O

Let X be a d-dimensional projective arithmetic variety, and let L be a continuous
Hermitian invertible sheaf on X. A subset K of H°(X, L) is called an arithmetic
linear series of L if K is a symmetric convex lattice in H°(X, L) with

K C Beup(L) :={s€ H*(Xg,Lg) | ||s]lsup < 1}.

If K=H(X,T) (= H*(X, L) N Baup(L)), then K is said to be complete. Then
we have the following theorem.

THEOREM 2.2
Let v be the valuation attached to a good flag Y. : X DY D Yo D --- DYy over
a prime p. If K is an arithmetic linear series of L with K # {0}, then the
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estimation

|#v(K \ {0})logp — log #(K)|

(L) +log(2prk(K)z)
logp

< <log(4prk<K>Z) + log(4) rk HO((’)X)> rk(K)z

holds, where (L) is given by

—_— d-1 =~ (T
o(L):=_ inf deg(c1(4) d_lc1(L))
A : ample deg(AQ )

Proof
We set 3= prk(K)z, A = Convg(K), and M, = (K)zNH(X, L—kY7) for k > 0.
Then My =(K)z, K=MyNA, tk M =1k My, and
M1 =My N HO (Y, (L — kY1) = Y7).
Let rp : HO(X,L — kY1) — HY(Y1, L — kY1ly,) be the natural homomorphism for
each k£ > 0. Note that
#U(K\{0}) = #vy, (re(M, N A) \ {0}).
k>0

Thus, by applying Proposition 2.1 to L — kY7, we obtain

> _(log#(My. N (1/8)A) —log # (M1 N (2/6)A))

k>0

< #v(K\{0})logp

< Z(log #(My, N 2BA) —log# (M1 N BA)),
k>0

which implies
#v(K \{0})logp < log #(My N 26A)
+ > (log #(Mi N 28A) — log #(Mj, N BA))

k>1

and
#v(K \ {0})logp > log # (Mo N (1/8)A)
— > (log #(My N (2/B8)A) — log #(My, N (1/B8)A)).

E>1
By (1.2.2.3),
log # (Mo N2BA) <log#(K) + log(43) rk Mo
and

log # (M, N 2BA) —log # (M, N BA) < log(4) rk M}, =log(4) rk M.
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Note that 28A N M, C H° (L — kY1 + O(log(23))). (For the definition of O(—),
see Section 4.) Thus if we set

S={k=1| H°(L - kY, + O(log(25))) # {0} },
then
#0(K\ {0)) logp < log #(K) + (log(45) + #5Tog(4)) rk My,
Let A be an ample C*°-Hermitian invertible sheaf on X. If k € S, then
0 <deg( (A& (L - kY1 + O(log(25))))

deg(Ag ") logp

— Teo (2 (A1 .~ (T d-1
=deg(€1(A)*"-21(L)) +1og(28) deg(Ag )*kmv
which implies that

(o(L) +1og(28)) 1k HY(Ox)
log p

k<

)

and hence

(o(T) + log(28)) rk H(Ox)
logp

Further, by using (1.2.2.3), we can see that

log # (Mo N (1/8)A) > log #(K) — log(28) rk My

#5 <

and
log # (My N (2/B)A) —log # (M, N (1/B8)A) <log(4) rk My, =log(4) rk M.
Hence, as before, we obtain

#V(K \ {0})logp > log #(K) — (log(28) + #S log(4)) rk Mo,

as required. ([l

COROLLARY 2.3

There is a positive constant ¢ = c¢(X,L) depending only on X and L with the
following property. For a good flag

Y: XDV DY, D---DYy
over a prime p, there is a positive constant mo = mo(p, Xg,Lg) depending only

on p, Xq and Lg such that, if m >myg, then

cmd

|[#vy (K \ {0}) logp — log #(K)| < oes

holds for any arithmetic linear series K of mL, where vy is the valuation
attached to the flag Y. : X DY1 DY D---DYy,.



706 Atsushi Moriwaki

Proof

The problem is an estimation of C,, given by

o(mL) +log(2prk H°(mL))
logp

(log (4pxk HO(mL)) + log(4)rk H'(Ox) )

x 1k HY(mL).
First of all, there is a constant ¢; depending only on Xg and Lg such that
rk HO(mL) < e;md=t

for all m > 0. Thus

d
c<«w%mmn)mu+men>MUﬁmw”ﬁ$
d

_ 0 cm
o(L)log(4) rk H(Ox) 10

We can find a positive integer m( depending only on p and c; such that if m > my,
then

(log(4pclm " log(p) + log(2peim® ) log(4)tk HY(Ox)) < 1+1k H°(Ox).
Therefore

Crmn < (1+ (1+0(L)log(4))tk H*(Ox))er

logp
for m > myg, as required. O

As an application of Corollary 2.3, we have the following theorem. The arithmetic
Fujita approximation theorem is a straightforward consequence of this result.

THEOREM 2.4

Let L be a big, continuous Hermitian invertible sheaf on a projective arithmetic
variety X. For any positive €, there is a positive integer ng = no(e) such that,
for all n > ny,

. dog#(Ki,) _ vol(D)
minf =" Z i

where Ky, ,, is the convez lattice hull of

— €,

={s1®--®@sy ’ S1y...,5k EFIO(X,nZ)}
in HO(X,knL).

Proof
A generalization of this theorem is proved in Theorem 6.2. ]
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3. Base locus of continuous Hermitian invertible sheaf

Let X be a projective arithmetic variety, and let L be a continuous Hermitian
invertible sheaf on X. We define the base locus Bs(L) of L to be

Bs(L) = Supp(Coker ((H°(X, L))z ® Ox — L)),

that is,
Bs(L)={z € X | s(z) =0 for allsEﬁO(X,f)}.
Moreover, the stable base locus SBS( ) is defined to be
SBs(L ﬂ Bs(mL).
m>1

The following proposition is the basic properties of Bs(L) and SBs(L).

PROPOSITION 3.1
(1) Bs(L+ M) is contained in Bs(L) UBs(M) for any L, M € Plc(X cY).
(2) There is a positive integer mo such that SBs(L) = Bs(mmgL) for all

—_

m >
(3) SBs(L+ M) is contained in SBs(L)USBs(M) for any L, M € Plc(X c9).
(4) SBs(L) is equal to SBs(mL) for all m > 1.

Proof
(1) This is obvious by its definition.

(2) By using (1), it is sufficient to find a positive integer mq with SBs(L) =
Bs(moL). Thus it is enough to see that if SBs(L) C Bs(aL), then there is b with
Bs(abL) C Bs(aL). Indeed, choose x € Bs(aL) \ SBs(L). Then there is b with
x ¢ Bs(bL), so that x ¢ Bs(abL) by (1).

(3) This is a consequence of (1) and (2).

(4) Clearly SBs(L) C SBs(mL). We choose mo with SBs(L) = Bs(mgL).
Then SBs(mL) C Bs(momL) = SBs(L). O

Let ¢ : Plc(X CO) — PICQ(X CY) (= ISR:(X C°) ® Q) be the natural homomor-
phism. For L € PICQ(X C"), there are a positive integer n and M € Pic(X;C?)
such that L = (1/n)¢(M). Then, by Proposition 3.1(4), we can see that SBs(M)
does not depend on the choice of n and M, so that SBs(L) is defined by SBs(M).
The augmented base locus SBs, (L) of L is defined to be
SBsy (L) = N SBs(L — 4).
AecPicy(X;C%)

A : ample

PROPOSITION 3.2
Let By,...,B, be ample C*™-Hermitian Q-invertible sheaves on X. Then there
s a positive number g such that

SBs,(L)=SBs(L —¢,B; — -+ —¢.B,)
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for all rational numbers €1,. .. €. with 0 <e; < e€p,...,0 <€, <e€g.

Proof
Since X is a Noetherian space, there are ample C°°-Hermitian Q-invertible
sheaves Aj,...,A; on X such that SBs, (L) = ﬂézl SBs(L — A;). We choose

a positive number ¢; such that, for all rational numbers €1, ... ¢, with 0 <e; <
L0<e.<eg,
Ai—eBy—---— B,
is ample for every i =1,...,l. Then by Proposition 3.1(2),
SBs(L —e1B1 — -+ —€,.B,) = SBS(L A+ (A —e By — - — GTET))
CSBs(L — A;)USBs(A; —e1By — -+ — €.B,.)
=SBs(L — 4;),
which implies
SBsy (L) CSBS(L — 1By — -+ —€.B;)
C ﬂ SBs(L =SBs, (L).

4. Arithmetic Picard group and cones

Similarly to [7], we fix several notations. Let X be a projective arithmetic vari-
ety. Let C°(X) be the set of real-valued continuous functions f on X (C) with
FX (f)=f, where F, : X(C) — X(C) is the complex conjugation map on X (C).
Let O : C°(X) — Pic(X;C°) be the homomorphism given by

6(f) = (OXanp(_f)‘ ) |can)~
We define Isi\cQ(X;CO) and lsi\(;@)R(X;CO) to be
Picg(X;C%) :=Pic(X;C°) ®Q  and  Picgr(X;C%):=Pic(X;C°) @R

We denote the natural homomorphism ﬁﬂ:(X ;C0) — I%Q(X :CY%) by ¢ Let
N(X) be the subgroup of Picgg(X;C?) consisting of elements

ofy@ar+-+0(fr) @z, (fi,..., fr €COX), 1,...,2, €ER)
with x1 f1 + -+ 4+ = f, = 0. We define lsi\cR(X;C’O) to be
Picg (X;C°) := Picgr(X; C%)/N(X).

Let 7: P1(:®]R(X Cc%) — PICR(X C°) be the natural homomorphism. Here we
give the strong topology to PICQ(X cY), PlC@]R(X CY), and PICR(X CY). Then
the homomorphisms

Isi\cQ(X; C% — F/’i\c®R(X;CO) and T lsi\c(g,R(X;CO) — Picr(X;C0)
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are continuous. Moreover, 7 : ISi\c®R(X;CO) — lsi\cR(X;CO) is an open map (cf.
Section 0.3(4)). We denote the composition of homomorphisms
Picg(X;C°) — Picgr(X;C%) - Picp(X; C°)
by p. Then p is also continuous. Note that p is not necessarily injective (cf. [7,
Example 4.5]).
Let Amp(X) be the subsemigroup of Pic(X;C?) consisting of all ample C'>°-
Hermitian invertible sheaves on X. Let us observe the following lemma.

LEMMA 4.1

Let A be an ample invertible sheaf on X. For any L € ISE(X;C'O), there are a
positive integer ng and f € C°(X) such that f >0 and

L+nA—0(f) € Amp(X)

for all n > ny.

Proof
Let | - | be the Hermitian metric of L, and let |- o be a C°°-Hermitian metric
of L. We set |- | =exp(—fo)| - |o for some fy € C°(X). We can take a constant

¢ with fo+¢>0 and put f = fo +¢. Then f >0 and exp(f)|-| is C°°, which
means that L — O(f) is C°°. Thus there is a positive integer ng such that

(L —0(f)) + nA € Amp(X)
for all n > ny. [l

PROPOSITION 4.2
Let C be a submonoid of Pic(X;C°) such that

{0(f) | fec®(x), fz0}cC.
We set B = Sat(fn?p(X) + 6) (see Section 0.3(1) for the saturation). Then we
have the following.
(1) B is open; that is, for any L € B and M € lsi\c(X; CY), there is a positive
integer n such that nL + M € B.
(2) If we set
Bg:= Coneg(«(B)) in Picg(X;CY),
E@R = COHGR(EQ) m lgi\C®]R(X; CO),
Bg := Coneg(p(Bg)) in Pica(X;CY),

then E@, §®R, and By are open in ﬁi\cQ(X; cY), 151\0®R(X; CY), and ﬁ:R(X; cY),
respectively.
(3) We have

~

,~Y(Bg) = B, Bgr N Picg(X;C°) = By,
W_I(BR) :§®]R, p_l(E]R) :EQ.
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Proof

(1) Let L e B and M e P/’i:(X;CO). Then there is a positive integer ng such
that ngL = A+ E for some A € A/m\p(X) and E € C. By Lemma 4.1, there are
a positive integer ny and f € C°(X) such that f >0 and M +n;A— O(f) = A
for some A’ € A/m\p(X) Then

nlnof—i—M:nl(Z—&-E)—i—M:ZI—i— (77/1E+6(f)) EE.

(2) This follows from Proposition 1.1.5(3), Proposition 1.1.4(2), and Propo-
sition 1.1.1(2.1).
(3) Let us consider the following claim.

CLAIM 4.2.1
Bgr + N(X) is contained in Bgr.

Proof
First of all, let us see the following formula:
(4.2.2) Bggr + 1(C) C Bgg.

Indeed, as B 4+ C C B, we have 1(B + C) C ¢(B). Thus by Proposition 1.1.4(3),
Bar + 1(C) C Coneg («(B)) + Coneg ((C)) = Coner («(B + C)) C Bgg.

Let a € Bgg and # € N(X). We set 2 =0(f1) ® a1 + --- + O(f,) ® a, with
aifi+---+a.f. =0, where f1,...,f. € C%(X) and ay,...,a, € R. Let us take a
sequence {a;,}22; in Q such that a; =lim, o a;n. We set ¢, = arnfr + -+
arp fr- Then

HQSTLHSUP = ||(a’177« - al)fl +- 4+ (arn - ar)fr”sup
<lain — al|Hf1||5up +tapn — arH‘fTHSUP'

Thus lim, s [|#n|lsup = 0. We choose a sequence {b,} in Q such that b, >
|onl|sup and lim,, o b, =0. Then ¢, + b, > 0. If we put

Tn :6(f1) ®(11n +--- +6(fr) ®arn +6(1) ®bn’

then lim, .o, 2, = z. On the other hand, as x,, = O(¢,, + b,) in f’i\cQ(X; ),

x, € 1(C). By Proposition 4.2(2), Bgr is an open set in Picgg(X;C?). Thus if
n>1, then (x — x,,) + a € Bgr. Hence the claim follows because
r+a= ((a:—acn)—l—a) —l—anE@R—I—L(a) §§®R.

(|

The first formula follows from Proposition 1.1.5(2). The second is derived from

Proposition 1.1.4(1). We can see the third by using Proposition 1.1.1(2.2) and
Claim 4.2.1. The last formula follows from the second and the third.
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5. Big Hermitian invertible sheaves with respect to an arithmetic subvariety

Let X be a projective arithmetic variety, and let Y be an arithmetic subvariety
of X; that is, Y is an integral subscheme of X such that Y is flat over Spec(Z).
A continuous Hermitian invertible sheaf L is said to be Y-effective (or effective
with respect to V) if there is s € H°(X, L) with s|y #0. For Ly, Ly € P/’i\c(X), if
L1 — Ly is Y-effective, then we denote it by L; >y Lo. We define ﬁf(X; Y) to be
Eff(X;Y):={L € Pic(X;C°) | T is Y-effective}.

Then it is easy to see the following (cf. Proposition 4.2):

(a) Eff(X;Y) is a submonoid of I/’/i\\c(X;C’O);

(b) {O(f)| f € COX), f>0} CBR(X;Y).
Here we define Big(X;Y), Bigg(X;Y), Bigga(X;Y), and Bigg(X;Y) to be

Big(X;Y) := Sat(Amp(X) + Eff (X;Y)),
Bigg(X;Y) := Coneg (1(Big(X;Y))),
Biggr(X;Y) := Coneg (Bigg (X;Y)),
gi\gR(X; Y') := Coneg (p(gi'\gQ(X; Y))),

where ¢, m, and p are the natural homomorphisms as follows:

Pic(X;C0) — Picg(X;C°) “— Picga(X;C°)

N l ’
Picg (X;C°)

For the definition of the saturation, see Section 0.3(1). By Proposition 4.2,
Bigy (X;Y), Biggr(X;Y), and Bigg(X;Y) are open in Picg(X;C?), Picgr(X;
C"), and Picg(X;C?), respectively. Moreover,

.~ (Bigg(X:Y)) = Big(X;Y),

Biggw(X;Y) N Picg(X; C°) = Bigg(X:Y),

7! (Bigs (X;Y)) = Biggr (X:Y),

p~" (Bigg (X;Y)) = Bigg(X;Y).
A continuous Hermitiin\ invertible sheaf L on X is said to be Y-big (or big with
respect to Y) if L € Big(X;Y). In the remainder of this section, we observe

several basic properties of Y-big, continuous Hermitian invertible sheaves. Let
us begin with the following proposition.

PROPOSITION 5.1
(1) Let L be a continuous Hermitian invertible sheaf on X. Then the fol-
lowing are equivalent:

(1.1) L is Y-big;
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(1.2) For any A€ KHTp(X), there is a positive integer n with nL >y A;
(1.3) Y Z SBsy (L);
(2) If L is Y-big, then there is a positive integer mg such that mL is Y -
effective for all m > my.

Proof

(1) Let us see that (1.1) implies (1.2): There is a positive integer n such that
nL =B+ M for some B € A/m\p(X) and M € EFF(X;Y). Let A be an ample
C°°-Hermitian invertible sheaf on X. We choose a positive number n; such that
n1B — A is Y-effective. Then

mnL — A= (mB—A) +n M
is Y-effective.

Next let us check that (1.2) implies (1.3): For an ample C°°-Hermitian
invertible A-sheaf, there is a positive integer n such that nL >y A. Thus there is
s€ H°(X,nL — A) with s|y # 0, which means that Y Z Bs(nL — A). Note that

Bs(nL — A) D SBs(nL — A) = SBs(L — (1/n)A) 2 SBs,.(L).

Hence Y Z SBs, (L).

Finally let us observe that (1.3) implies (1.1): Let A be an ample C*°-
Hermitian invertible sheaf. Then by Proposition 3.2, there is a positive number
n such that

SBsy (L) =SBs(L — (1/n)A) =SBs(nL — A).
Thus, by Proposition 3.1(2), we can find a positive integer m such that
SBs (L) = Bs(m(nL — A)),

so that there is s € HO(X,m(nL — A)) with s|y # 0 because Y ¢ SBs, (L). This
means that mnL >y mA, as required.

(2) We choose an ample C*°-Hermitian invertible sheaf A such that A and
L+ A is Y-effective. Moreover, we can take a positive integer a such that aL — A
is Y-effective because L is Y-big. Note that aL = (aL — A) + A and (a+ 1)L =
(aL —A)+ (L+ A). Thus aL and (a+ 1)L are Y-effective. Let m be an integer
with m > a? +a. We set m=aq+r (0<r<a). Then ¢ > a, so that there
is an integer b with ¢ =b -+ and b > 0. Therefore mL is Y-effective because
mL=b(aL)+r((a+1)L). O

PROPOSITION 5.2

Let X be a projective arithmetic variety, let Y be a d'-dimensional arithmetic
subvariety of X, and let L be a continuous Hermitian invertible sheaf on X. Let
Z.:20=YDZDZyD D Zy be a good flag over a prime p on Y. If L is
Y -big, then

{(vz.(s]y),m) | se HY(X,mL) and sly #0}

/
generates Z4*' as a Z-module.
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To prove Proposition 5.2, we need the following two lemmas.

LEMMA 5.3

Let X be either a projective arithmetic variety or a projective variety over a field.
Let Z be a reduced and irreducible subvariety of codimension 1, and let x be a
closed point of Z. Let I be the defining ideal sheaf of Z. We assume that I is
principal at x. (It holds if X is reqular at x.) Let H be an ample invertible sheaf
on X. Then there is a positive integer ng with the following property: for all
n>mng, we can find s € H*(X,nH ® I) such that s #0 in nH @ I ® r(x), where
k(x) is the residue field at x.

Proof
Let m; be the maximal ideal at z. Since I is invertible around z, we have the
exact sequence

0—-nHRI®m, >nHRI —>nH®I®k(z)—D0.
As H is ample, there is a positive integer ng such that
HYX,nH®I®m,)=0

for all n > ng, which means that H*(X,nH ® I) — nH ® I ® x(z) is surjective,
as required. O

LEMMA 5.4

Let X be a projective arithmetic variety, and let Y be a d’'-dimensional arithmetic
subvariety of X. Let Z.: Zo=Y DZ1 D Zs DD Zg be a good flag over a
prime p on Y. Let H be an ample invertible sheaf on X. Let e1,...,eq be the
standard basis of Z . Then there is a positive integer ng such that, for allm > ng,
we can find s1,...,5¢ € HO(X,nH) with vz (s1ly) =e1,...,vz (saly) = ea.

Proof
First of all, we can find n( such that, for all n > ng,
H°(X,nH)— H%(Z;,nH|z,)

are surjective for all i. We set Zg = {z}. Fori=1,...,d’, let I; be the defining
ideal sheaf of Z; in Z;_;. Then, by Lemma 5.3, there is a positive integer n
such that, for all n > n/, we can find s, € H°(Z;,nH|z,_, ®I;) such that s} # 0 in

nH|z,_, ®1; ® k(z). Thus if n > max{n{,n},...,n/,}, then there are s1,...,s4 €
H°(X,nH) such that s;|y, , =, for i=1,...,d". By our construction, it is easy
to see that vz (si|y) = e;. O

Proof of Proposition 5.2
Let us begin with the following claim.

CLAIM 5.5.1
There are an ample C>-Hermitian invertible sheaf A and sg,s1,...,54 € ﬁO(X,
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A)\ {0} and t € HO(X,A+T)\ {0} such that
soly Z0,81)y #0,...,8aly Z0,tly #0
and
vz (soly) =0, vz (sily)=e1,..., vz (sa'ly) =ea, and vz (t|ly)=0.
Proof
Let B be an ample invertible sheaf on X. By Lemma 5.4, there are positive

integers n, sg,81,...,84 € H'(X,nB) \ {0}, and t € H*(X,nB + L) \ {0} such
that

Vz_(80|y) = O, Vz_(81|y) =€1,..., VZz (Sd|y) = €4, and Vyg. (t|y) =0.
We choose a C*°-Hermitian metric of B such that B is ample, sg,s1,...,54 €
HO(X,nB), and t € H*(X,nB+L). O

Let M be the Z-submodule generated by

{(vz.(sly),m) | s€ HO(X,mI) and s|y # 0}.
Sincef L is Y-big, there is a positive integer a with aL >y A; that is, there is
ec€ HY(X,aL — A) with e|y # 0. Note that

teec H'(X,(a+1)L) and  so®e€ H(X,al).
Moreover, vz (t®ely) =vz (ely) and vz (so ® e|ly) = vz (e|]y). Thus
(I/Z (t®ely),a+ 1) - (I/Zl (so ® e|y),a) =(0,...,0,1) e M.
Further, as s; ® e, so®e € fIO(X, aL), we obtain
(VZ. (8i ® €|Y),m) - (VZ. (so®ely), m)

= (e; + vz (ely),m) — (vz.(ely),m) = (e;,0) € M.

Hence M = Z4+1, O

6. Arithmetic restricted volume

Let X be a projective arithmetic variety, and let Y be a d’-dimensional arithmetic
subvariety of X. For an invertible sheaf L on X, Image(H®(X,L) — H°(Y, L|y))
is denoted by H°(X | Y,L). We assign an arithmetic linear series H(X | Y, L)
of L]y to each continuous Hermitian invertible sheaf L on X with the following
properties:

(1) Tmage(HO(X,T) — HO(X | v, L)) € AY(X |V, L)

(2) s@s € HO(X |Y,L+M) forall s€ H (X |Y,L) and s’ € HO(X | Y, M).
This correspondence L — HY (X | Y,L) is called an assignment of arithmetic

restricted linear series from X to Y. As examples, we have the following.
o HY (X |Y,L): HY (X |Y,L) is the convex lattice hull of

Image(H°(X,T) — H(X | Y, L))
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in H°(X | Y,L). This is actually an assignment of arithmetic restricted linear
series from X to Y. The above property (1) is obvious. For (2), let s1,...,s, €
Image(H°(X,L) — H°(X | Y,L)) and ,,...,s., € Image(H°(X, M) — HO(X |
Y, M)), and let

Ayenes Ap and e AL
be nonnegative real numbers with Ay +---+ A, =1 and \] +---+ X, =1. Then

A1s1+ -+ Arsp) @(N)sy 4+ -+ Asl) = Z)‘M;'(Si ® ;)
.

and

DSANN =+ AN 4 M) =1,
i

as required.

o HY (X |Y,L): Let |- H;ilp}jquot be the quotient norm of H°(X |Y,L)
induced by the norm || - ||lsup on H°(X, L) and the natural surjective homomor-
phism H°(X,L) — H°(X | Y,L). Then H (X |Y,L) is defined to be

quot

Hpuot(X | Y.D) = {s € HUX | V.L) | [ls]Supquor < 1}-
This is obviously an assignment of arithmetic restricted linear series from X to Y.
. ffgub(X | Y,L): Let || ||ly.sup be the norm on H°(Y, L|y) given by ||s|ly.sup =
sup,ey (o) 18/(y). Let || - Hi‘s;ub be the subnorm of HY(X |Y,L) induced by
| ly,sup on HO(Y, L|y') and the natural injective homomorphism HY(X | Y,L) —

HO(Y,Lly). Then H® (X |Y,I) is defined to be

sub

Houw(X | V,T) = {s € HOX |Y,L) | [Is e < 1}-

sub sup,sub —

This is obviously an assignment of arithmetic restricted linear series from X to Y.
Note that

He (X |Y,L) CHY (X | Y,I) C HY, (X |V, I)

quot

for any continuous Hermitian invertible sheaf L. An assignment L — HO(X |
Y, L) of arithmetic restricted linear series from X to Y is said to be proper if, for
each L € Pji\c(X, CY), there is a symmetric and bounded convex set A in HO(X |
Y,L) ® R such that H)(X | Y,L+O(\) = H(X | Y,L) Nexp(M\)A for all A € R.
For example, the assignments L +— Iilguot (X |Y,L) and L+ HS, (X |Y,L) are
proper.

Let us fix an assignment L — HO(X |Y,I) of arithmetic restricted linear
series from X to Y. Then we define the restricted arithmetic volume with respect

to the assignment to be

—~ _ log #HY(X | Y,mL
volo(X | ¥, T) = lim sup 227 n.w(l’/d|/' .mL)

Let us begin with the following proposition.
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PROPOSITION 6.1
L <y M, then d L)< g M). n particular
(1) If T <y M, then #H2(X |Y,L) < #HY(X | Y,M). In particular,
vole (X | Kf) <vole(X | Y,M).
e assume that the assignment L~ ,_ 1S proper. en, for
2) W hat th ; L— H)(X|Y,L Then, f
any L € Pic(X;C%) and f € C°(X),

[vole (X | Y.L +O(f)) — vole(X | Y,L)| < d'vol(Xq | Yo, Lo) | f lsups
where vol(Xq | Yo, Lg) is the algebraic restricted volume (see [3]).
Proof

(1) Let us choose t € H*(X, M — L) with t|y #0. Then t|y € HO(X |Y,M —T)
and

s® (tly) € HY(X | Y, M)
for any s € HY(X | Y, L), which means that we have the injective map
AY(X |Y,T) — (X | Y, )
given by s— s® (t|y). Thus (1) follows.
(2) First, let us see that

(6.1.1)  |vole(X | Y, +O(N) —volo(X | Y,L)| < d'vol(Xq | Yo, Lg)|A|

for any L € 151\0(X ;0% and )\ € R. Without loss of generality, we may assume
that A > 0. As the assignment is proper, for each m > 1 there is a symmetric
and bounded convex set A,,, such that

HY(X | Y,mL +O(p)) = H*(X | Y,mL) Nexp(p) A,
for all u € R. Thus, by using Lemma 1.2.2,
0 <log#HJ(X | Y,m(L+O(\))) —log#H)(X | Y,mL)
=log#(H*(X |Y,mL) Nexp(mA)A,) —log#(H*(X | Y,L) N A,)
<log([2exp(m\)]) dimg H*(Xq | Yo, mLg),

which implies (6.1.1).
For f € C%(X), if we set A = || f||sup, then —A < f <. Thus the proposition
follows from (6.1.1). O

The following theorem is the main result of this section.

THEOREM 6.2
(1) If L is Y-big, then

—~ — . log#H(X | Y,mL)
vole(X | Y, L) = n}E»nm md’/d/! :

In particular, if L is Y -big, then \781.(X |Y,nL) = n' vol, (X |Y,L) for all non-
negative integers n.
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(2) If L and M are Y -big, continuous Hermitian invertible sheaves on X,
then

Vole (X | Y, L+ MY > voly(X | YV, T)Y¥ + volo (X | Y, B)/¥

(3) If L is Y -big, then for any positive €, there is a positive integer ng = no(¢)
such that, for all n > ny,

- log#(Kpa) _ volo(X |V, T)
bminf =G 2 '
where Ky, ,, is the convex lattice hull of

Vin={s1® - ®@sk | s1,...,8, € HO(X | Y,nL)}
in HO(X | Y,knL).

— €,

Proof
Let Z.: Zg=Y D Z1 D ZyD---D Zg be a good flag over a prime p on Y.
(1) Let A be the closure of

U % (A2(X | Y,mL)\ {0})

in R?. Then, by Proposition 5.2, [11, Lemma 2.4], and [5, Proposition 2.1],
#vz (H(X | Y,mL)\ {0})

’

vol(A) = lim

By Corollary 2.3, there is a constant ¢ depending only on L such that

d/
N _ cm N —
vz (H(X | Y,mL)\ {0})logp — Togp <log#H](X |Y,mL)

< vz (BY(X | Y,m)\ (0)) logp +
>~ VZ. ° 3 gp logp’
which implies that
log#HO(X | Y,mL
vol(A)logp — —— < liminf E#H X |Y.mL)
logp m—oo m
log#HO(X | Y,mL
< timsup ERIXIVIE) o)) 1ogp 4 ©
m—0o0 m logp
Hence
lim sup d’ —limin 7
m— oo m m—>:>0 m logp

Thus as p goes to oo, we have

i log#HY(X |Y,mL) . . log#HY(X|Y,mL)
imsup - = liminf .

Moo m m—oo md
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Moreover, we can see that

/|

—~ — d
2. . — 4l < © .
(6.2.1) |vole (X | Y, L) — vol(A)d'!logp| < Togp

(2) Let A" and A" be the closure of

vz (HJ(X | Y,mM)\ {0})

ﬁcg
3|~

—

and

%VZ_ (H(X | Y,m(L+ M)\ {0})

ﬁcg

in R, Since
vz (HY(X | Y,mL)\{0}) + vz (H)(X | Y, mM)\ {0})
—{vz(s@s) | s€e HY(X|Y,mL)\ {0}, s’ € H)(X | Y,mM)\ {0}}
Cvy (H)(X |Y,m(L+M))\{0}),
we have A + A’ C A”. Thus by Brunn-Minkowski’s theorem,
Vol(A")V 4 > yol(A + ANV > vol(AYV/ + vol(AYV/ T

Note that (6.2.1) also holds for L and L + M with other constants ¢’ and ¢”.
Hence for a small positive number ¢, if p is a sufficiently large prime number,
then

[vole (X | Y, ) — vol(A)d'! log p| < e,
[vole(X | Y, M) — vol(A)d' ! logp| < e,

and

[vole(X | Y, T + M) — vol(A")d'log p| < €
hold. Therefore
(volo(X | V,Z+D0) + )/ > (volo (X |V, T) — )" + (volo(X | Y, 31) — )/,

as required.

(3) Let ¢ be a constant for Y, and let L|y be as in Corollary 2.3. We choose
agoodflag Z.: Zy=Y DZ1 D Zs D+ D Zg over a prime p with ¢/(logp) < e/3.
Let € be a positive number with €'logp <e/3. By [5, Proposition 3.1], there is
a positive integer ng such that

L (b (X | Y,nT) \ {0))
im —

k—o0 kd ’I’Ld

for all n > ng. Note that

V(K \{0}) 2 k(DX | Y,nI) \ {0})

>vol(A) — €
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and

log #(Kyn) = #1(Kin \ {0})logp — (¢/3)k% n?
by Corollary 2.3 for k> 1. Thus

log # (Ky)  #(k*v(HY(X |Y,nL)\ {0})) logp
kdnd = kd nd’ —e/3

which implies that

1 Kion . k+v(HO(X |Y,nL)\ {0}))1
ogk#d/(n;, )z i #(kx v(HY( k\dnz )\ {0})) B s

k—o0

> (vol(A) — €') logp — €/3 > vol(A) logp — 2¢/3.

lim inf

k—o0

Moreover, by (6.2.1),

Thus we obtain (3). O
In the remainder of this section, let us consider consequences of Theorem 6.2.

COROLLARY 6.3
There is a unique continuous function

vol, (X | Y, —) : Biggp(X;Y) =R
with the following properties:
(1) voly (X | Y,u(T)) = volo(X | Y, T) holds for all T € Big(X;Y);
(2) vol,(X | Y, \z) = )\d/;c;l',(X | Y,x) holds for all A € Ryo and z €
Biggr(X;Y); - B
(3) voly(X | Y,z 4+4)V/¥ >vol,(X | Y,z)"/% +vol,(X | Y,y)/? holds for all
2,y € Bigga (X;Y).

Proof
It follows from Theorem 6.2, Proposition 1.1.5, and Corollary 1.3.2. O

COROLLARY 6.4
If the assignment L— HO(X | Y, L) is proper, then there is a unique continuous
function
volJ(X | Y,—) : Bigg(X;Y) - R

with the following properties:

(1) voly(X | Y, m(a')) = vol, (X | Y,a') holds for all 2’ € Biggyp(X;Y);

(2) vol/(X | Y, z) = X¥vol/(X | Y,z) holds for all A € Rsg and z €
Bigg (X;Y);

(3) vol/(X | Y,z +y)V/4 >vol/(X | Y,z)Y ¥ +vol/(X | Y,y)Y/¥ holds for all

—

,y € Bigg(X;Y).
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Proof
Let us begin with the following estimation:

(6.4.1)  |[voly(X | Y, L +0O(f)) — vol,(X | Y, I)| < d'vol(Xq | Ya, L) | fllsup

for any L € §i\g®R(X;Y) and f € C°(X) with L+O(f) € g%@,R(X;Y). By using
the openness of gi\g@,R (X;Y) and the continuity of vol, (X|Y,—)on Ei\g@R (X;Y),
it is sufficient to see (6.4.1) for L € ﬁi\gQ(X;Y). Thus L = (1/n)c(M) for some
M e §i\g(X; Y) and n € Z~, and hence, by Proposition 6.1,

[vol, (X | Y,Z + O(f)) — vol,(X | Y,L)|
= [voll (X | Y. (1/n)u(M + O(nf))) — voly (X | Y, (1/n)u(3))]
= (1/n)%|vole (X | Y, M + O(nf)) — vole(X | Y, M)
= (1/n)"d'vol(Xq | Yg, Mg)||nf||sup = d' vol(Xq | Yo, L) | £ lsup-
Let us observe that there is a function
volJ(X | Y,—) : Bigg(X;Y) - R

such that the following diagram is commutative:

. vol, (X |Y,—)
Biggr(X;Y) — = R

l vol/ (X | Y -)
Bigg (X;Y)

Namely, we need to show that if w(2’) =w(y') for 2’,y € §1E®R(X; Y), then
vol, (X | V) = vol (X | Y,1/).

As 7(2') = n(y'), there is z € N(X) such that ' =2’ + 2. Weset 2=0(f1) ®
a; + -+ O(f.) ® a, with a1 f; + -+ + a,f. =0, where fi,..., f. € C%(X) and
ai,...,a, € R. Let us take a sequence {a;, }2; in Q such that a; = lim,,_, ;.
We set ¢, =ainfi+ -+ apnfr. Then

Hﬁansup = [(a1n —a1)f1 + -+ (@rn — ar)fr”wp
<lain — almfl”sup +o ot larn — arH‘fTHSUP'

Thus lim,, oo ||n|lsup = 0. If we put 2, = O(f1) ® a1 + -+ - + O(f) @ @y, then
lim,, 00 2n, = 2 in Picgr(X;C) and z, = O(¢,,) in Picg(X;C?). Thus by (6.4.1),

VoI, (X | Y, + 2,) — vol, (X | Y, 2')]
= [Vol, (X | Y.+ O(¢n)) —voly (X | Y,2')]
< d'vol(Xg | Yo, 7)l|én|sup

for n>> 1. Therefore as n goes to oo, \70\1’,(X |Y,y) :;SIL(X |Y,2').
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Properties (2) and (3) are obvious. The continuity of \7(;1’.’ (X]Y,—) follows
from the fact that 7 is an open map. O

7. Restricted volume for ample C'*°-Hermitian invertible sheaf

In this section, let us consider the restricted volume for an ample C'*°-Hermitian
invertible sheaf and observe several consequences.

THEOREM 7.1

Let X be a projective arithmetic variety, and let Y be a d’'-dimensional arithmetic
subvariety of X. Let A be a Y -big continuous Hermitian invertible sheaf on X.
Then we have the following.

(1) We assume that there are a positive integer a and strictly small sections

81,...,8 of aA with {x € Xg | s1(x) = =s,(x) =0} =0. Then
- o 70 T 0
“olnot (X | ¥, ) = Tim log # Image(H' (X,r;A)HH (X|Y,mA)).
m—00 m® /d'

Moreover, if Ag is ample on Xq, then

iy log# Image(H°(X,mA) — H(X | Y, mA))

0.
m— oo md /d'! ”

(2) We assume that X is generically smooth, Ag is ample on Xq, the metric
of A is C*, and c1(A) is semipositive on X(C). Then

Volguot (X | Y, A) = vol(Y, Aly).

Proof
(1) Let Z be the defining ideal sheaf of Y. Let us begin with the following claim.

CLAIM 7.1

We can find a positive integer mg and a positive number ey with the following
property: for all m > mq, there is a free basis e1,...,en of H'(X,mA ® I)
as a Z-module such that ||e;||sup < €~ for all i, where the norm || - ||sup Of
HY(X,mA®ZT) is the subnorm induced by the inclusion map H*(X,mA®T) —
H(X,mA) and the sup norm of H°(X,mA).

Proof
By [8, Corollary 3.3], there are positive constants B and ¢ such that

)\Q(HO(X, 77-“4)7 H . ||sup> g B(m + 1)dimX(dimX—1) eXp(—cm)

for all m >0 (for the definition of g, see [8]). We set R=@D,, -, H'(X,mA)
and [ =@,,~, H*(X,mA®TI). Note that Rg is Noetherian by 8, Lemma 3.4].
Thus as I is a homogeneous ideal of R, I is finitely generated as a Rg-module.
Therefore by [8, Lemma 2.2], there is a positive constant B’ such that

Ao (HY(X,mART),| - |lsup) < B'(m + 1)3m X AmX=1) oxn(cm)
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for all m > 0. Hence the claim follows by [8, Lemma 1.2]. O
Let € be an arbitrary positive number. Next, let us see the following claim.

CLAIM 7.1.2
ngot (X |Y,m(A—0O(e))) is contained in Image(H° (X, mA) — H(X | Y,mA))
for m> 1.

By Claim 7.1.1, if m > 1, then we can find a free basis ey, ...,ey of HY(X,mA®
7) such that [|€;||sup < e ™ for all i. We choose enyi1,...,en € HO(X,mA)
such that ex 11|y, ... ey form a free basis of H*(X | Y,mA). Then eq,...,en
form a free basis of H?(X,mA). Let s € ﬁguot (X Y, m(A—OC(e))). Then there

is s’ € H'(X,mA) ® R such that s'|y =s and ||§/||sup = ||s\\jf1§quot <e M. We
set s’ = Zf\il cie; (¢; €R). Since
M
s'ly = Z cieily =s€ HY(X | Y,mA),
i=N+1

we have ¢; € Z for all i=N +1,..., M. Here we put

VA3

N M
:Z[cﬂei—k Z cie;.

i=1 i=N+1
Then 5]y = s and

<e M pemomrk HO(X,mA),

sup

N
[8llup = |5+ (el = e

which means that 5 € H°(X,mA) for m>> 1. Therefore
s€ Image(ﬁO(X, mA) — H°(X | Y,mA)).

By the above claim, if we choose € >0 such that A — O(e) is Y-big, then

- < 7 1 I HO(X., mA) — H(X | Y,mA
volguot (X | Y, A~ O(e)) < liminf og # Image(H"( 1 ) — H°(X | Y,mA))
4 m— o0 md /d’!

. log # Image( H°(X, mA) — HO(X | Y,mA
< timp g7 HOCX )

< Volguot (X | Y, A).
Hence the first assertion follows because, by Proposition 6.1,
Volguot (X | Y, A = 0(€)) > volguot(X | Y, A) — d'evol(Xg | Yo, Ag)

and e can be taken as an arbitrary small number.
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We further assume that Ag is ample on Xg. Let us observe that
_ log#Image(H°(X,mA) — H°(X | Y, mA))
lim 7
m—00 m® /d'

Let us choose a sufficiently large integer ng with the following properties.

> 0.

(a) H°(X,npA) has a free basis ¥ consisting of strictly small sections, which
is possible by [8, Corollary 3.3, Lemma 1.2].

(b) Sym™(H®(X,n0A)®Q) — H°(X,mnoA) ®Q is surjective for all m > 1.

(c) H%(X,mnpA)®Q— H°(Y,mnoAly) ® Q is surjective for all m > 1.

We set e~ = max{||$|lsup | s € £}. Then ¢ > 0. Moreover, we put
YSm={s1® - Q8m|51,.-.,8m €L}

Note that %, generates H°(X, mnoA) ®Q as a Q-vector space and that ||s||sup <
e~™¢ for all s €%,,. Let r,, be the rank of H°(Y,mngAly). Since {s|y | s € I}
gives rise to a generator of H°(Y,mnoAly) ® Q, we can find s1,...,s,. €3,
such that {si|y,...,s,, |y} forms a basis of H*(Y,mngAly) ® Q. We put
Sm={(a1,...,a,)€EL™ ‘ 0<a;<e™/rm}.

Then the map S, — H°(Y,mnoAly) given by

(a1,...,ar,) = aisily +- +ap, 50,y

is injective. Moreover, for (as,...,a,, ) € Sm,

Tm
i=1

Tm

Tm
<3 allsillony < 3 (™ frm)em =1.
Sup

=1

Hence
# Tmage(H°(X, mnoA) — HO(X | Y, mngA)) > #(Sm) > (€™ fro ).
Thus the second assertion follows.

(2) Note that volguet (X | Y, A) < vol(Y, Aly). Thus if vol(Y, Aly) =0, then
the assertion is obvious, so that we may assume that vol(Y, Aly) > 0. Let € be
an arbitrary positive number such that (A — O(¢))|y is big. By Theorem 6.2(3),
there is an integer n; > 2 such that if we set H° (Y,n1(A—=0(e)) ={s1,..., s},
then

liminf log#CL{s{*" ® - 5/@ iZl | (a1,...,a;) €T })
m— 00 md'n{ /d'!

where T, = {(a1,...,a;) € (Z>0)! | a1 + --- + a; = m}. Note that ||s;|ly.sup <
e~ ™¢ for all . By [12, Theorems 3.3, 3.5], if m > 1, then for any (a1,...,a;) € Ty,
there is s(ai, . ..,a;) € H*(X,mn; A) ®R such that s(ai,...,a;)|ly =s7*®@---@s"
and

Is(ar, ... )| xsup < €™ st $up - 1§y < €M7 <1,

which means that s{' @ ---® s € HO,. (X | Y,mn,A). Therefore

quot

CL({s{*®---®@si" | (a1,...,a1) €T }) g]flguot(X | Y, mni A).



724 Atsushi Moriwaki

Hence
vol(Y, Aly) = volguor (X | Y, A)

log #HO . (X | Y,mn, A)

=1 q
mgnoo (mnl)d’/d/!
1 L{s"®--- ay r
> liminf og# CL({s1" ® ?31/ [(a1,...,a;) €T })
m— oo md ntil /d”

>vol(Y, A= O(e)ly) — e > vol(Y, Aly) — e(d vol(Yg, Ag) + 1),

as required. O

COROLLARY 7.2

Let T— HO(X | Y, L) be an assignment of arithmetic restricted linear series from
X toY. Then we have the following.

(1) If X is generically smooth and A is an ample C™-Hermitian invertible
sheaf on X, then

vols (X | Y, A) = vol(Y, Aly).
(2) If L is a Y-big continuous Hermitian invertible sheaf on X, then
volo (X | Y,T) > 0.
(3) If & € Biggw(X;Y), then voly(X | Y, ) > 0.
Proof
(1) This is a consequence of Theorem 7.1.
(2) As L is Y-big, there are a positive integer n and an ample C*°-Hermitian

invertible sheaf A on X such that nL >y A, so that, by Proposition 6.1(1) and
Theorem 7.1(1),

n?vole(X | Y,I) = vols (X | Y,nL) > vole(X | Y, A) > 0.

3)Ifxe EE{@R(X; Y), there are positive numbers a1, ...,a, and L1,...,L, €
Big(X;Y) such that x = L; ®a; +-- -+ L, ® a,. Hence, by (2) and Corollary 6.3,

volo(X | Y, z)V/%
2\7(;1.()( | Y. I, ®a1)1/d' +--~+\70\1.(X | Y, L, ®ar)1/d/
:aﬂ?(;l.(X |Y, L)V +'~-+ar\70\1.(X 1Y, T > 0.

O
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