Journal of Mathematics of Kyoto University

Weak approximation, Brauer and R-equivalence in algebraic groups over arithmetical fields, II

Nguyêñ Quôć Thǎńg

Full-text: Open access

Abstract

In this paper we prove that certain natural birational and arithmetic invariants of connected subgroups of linear algebraic groups all defined over a local or global field of characteristic 0 are bounded in terms of the ambient group and the base field.

Article information

Source
J. Math. Kyoto Univ., Volume 42, Number 2 (2002), 305-316.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250283872

Digital Object Identifier
doi:10.1215/kjm/1250283872

Mathematical Reviews number (MathSciNet)
MR1966839

Zentralblatt MATH identifier
1040.20038

Subjects
Primary: 11E72: Galois cohomology of linear algebraic groups [See also 20G10]
Secondary: 20G10: Cohomology theory

Citation

Thǎńg, Nguyêñ Quôć. Weak approximation, Brauer and R-equivalence in algebraic groups over arithmetical fields, II. J. Math. Kyoto Univ. 42 (2002), no. 2, 305--316. doi:10.1215/kjm/1250283872. https://projecteuclid.org/euclid.kjm/1250283872


Export citation