Journal of the Mathematical Society of Japan

Equivariant weight filtration for real algebraic varieties with action


Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We show the existence of a weight filtration on the equivariant homology of real algebraic varieties equipped with a finite group action, by applying group homology to the weight complex of McCrory and Parusiński. If the group is of even order, we can not extract additive invariants directly from the induced spectral sequence.

Nevertheless, we construct finite additive invariants in terms of bounded long exact sequences, recovering Fichou's equivariant virtual Betti numbers in some cases. In the case of the two-elements group, we recover these additive invariants by using globally invariant chains and the equivariant version of Guillén and Navarro Aznar's extension criterion.

Article information

J. Math. Soc. Japan Volume 68, Number 4 (2016), 1789-1818.

First available in Project Euclid: 24 October 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14P25: Topology of real algebraic varieties
Secondary: 14P10: Semialgebraic sets and related spaces 57S17: Finite transformation groups 57S25: Groups acting on specific manifolds

equivariant homology weight filtration real algebraic varieties group action additive invariants


PRIZIAC, Fabien. Equivariant weight filtration for real algebraic varieties with action. J. Math. Soc. Japan 68 (2016), no. 4, 1789--1818. doi:10.2969/jmsj/06841789.

Export citation


  • K. S. Brown, Cohomology of Groups, Graduate texts in Math., 87, Springer-Verlag, 1982.
  • J. F. Carlson, L. Townsley, L. Valero-Elizondo and M. Zhang, Cohomology rings of finite groups with an appendix: Calculations of cohomology rings of groups of order dividing 64, Algebra and Applications, 3, Kluwer Academic Publishers, Dordrecht, 2003.
  • P. Deligne, Théorie de Hodge II, IHÉS Publ. Math., 40 (1971), 5–57.
  • P. Deligne, Poids dans la cohomologie des variétés algébriques, In: Proc. Int. Cong. Math., Vancouver, 1, 1974, Canad. Math. Congress, Montreal, Que., 1975, 79–85.
  • J. Denef and F. Loeser, Motivic Igusa zeta functions, J. Algebraic Geom., 7 (1998), 505–537.
  • G. Fichou, Equivariant virtual Betti numbers, Ann. Inst. Fourier (Grenoble), 58 (2008), 1–27.
  • F. Guillén and V. Navarro Aznar, Un critère d'extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci., 95 (2002), 1–91.
  • H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. of Math. (2), 79 (1964), 109–326.
  • K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann., 282 (1988), 445–462.
  • K. Kurdyka and A. Parusiński, Arc-symmetric sets and arc-analytic mappings, Panor. Synthèses, 24, Soc. Math. France, 2007, 33–67.
  • J. McCleary, A User's Guide to Spectral Sequences, second edition, Cambridge Stud. Adv. Math., Cambridge University Press, 2001.
  • C. McCrory and A. Parusiński, Algebraically constructible functions, Ann. Sci. École Norm. Sup. (4), 30 (1997), 527–552.
  • C. McCrory and A. Parusiński, Virtual Betti numbers of real algebraic varieties, C. R. Math. Acad. Sci. Paris, 336 (2003), 763–768.
  • C. McCrory and A. Parusiński, The weight filtration for real algebraic varieties, In: Topology of stratified spaces, Math. Sci. Res. Inst. Publ., 58, Cambridge Univ. Press, Cambridge, 2011, 121–160.
  • F. Priziac, Complexe de poids des variétés algébriques réelles avec action, Math. Z., 277 (2014), 63–80.
  • B. Totaro, Topology of singular algebraic varieties, In: Proc. Int. Cong. Math., II, Beijing, 2002, Higher Ed. Press, Beijing, 533–541.
  • J. van Hamel, Algebraic cycles and topology of real algebraic varieties, CWI Tract, 129, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 2000.