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Abstract. We show the existence of a weight filtration on the equivari-
ant homology of real algebraic varieties equipped with a finite group action, by
applying group homology to the weight complex of McCrory and Parusiński.
If the group is of even order, we can not extract additive invariants directly
from the induced spectral sequence.

Nevertheless, we construct finite additive invariants in terms of bounded
long exact sequences, recovering Fichou’s equivariant virtual Betti numbers in
some cases. In the case of the two-elements group, we recover these additive
invariants by using globally invariant chains and the equivariant version of
Guillén and Navarro Aznar’s extension criterion.

1. Introduction.

In [4], P. Deligne established the existence of the weight filtration on the rational
cohomology of complex algebraic varieties. A real analog of this filtration was intro-
duced by B. Totaro on the Borel–Moore Z2-homology of real algebraic varieties in [16].
Using an extension criterion for functors defined on nonsingular varieties by F. Guillén
and V. Navarro Aznar ([7]), C. McCrory and A. Parusiński showed in [14] that this
weight filtration for real algebraic varieties can be induced from a functorial (with re-
spect to proper regular morphisms) filtered chain complex, defined up to filtered quasi-
isomorphism. Considering the associated spectral sequence (that does not collapse at
level two, contrary to the complex framework), they highlight the information contained
in this invariant. In particular, McCrory and Parusiński extract from the real weight
spectral sequence their additive virtual Betti numbers ([13]). Furthermore, they realize
the weight complex from the chain level, using resolution of singularities ([8]). On the
real algebraic varieties, this geometric filtration coincides with a filtration defined on
the category of AS-sets ([9], [10]) and continuous proper maps with AS-graph, using
Nash-constructible functions ([12], [14]).

In [15], we considered real algebraic varieties equipped with a finite group action.
By taking advantage of the functoriality of the weight complex, we equipped it with
the induced group action. We then used an equivariant version of the extension crite-
rion of Guillén and Navarro Aznar (Theorem 2.4) to show the uniqueness of the weight
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complex with action, with respect to extension, acyclicity and additivity properties, up
to equivariant filtered quasi-isomorphism (Theorem 2.3). Focusing on its realization by
the Nash-constructible filtration, we obtained a filtered version of the Smith short ex-
act sequence for an algebraic involution (Theorem 2.6). Furthermore, in the case of an
involution acting without fixed point on a compact real algebraic variety, we related by
a filtered isomorphism the invariant filtered chains and the filtered chains of the arc-
symmetric quotient (Proposition 2.7).

In this paper, we apply a functor (Definition and Proposition 3.4) to the weight
complex with action (Definition 3.15) in order to induce a weight filtration on the equiv-
ariant homology of real algebraic varieties equipped with a finite group action. We show
the uniqueness of the equivariant weight complex, with respect to extension, acyclicity
and additivity properties, similarly to the previous frameworks (Theorem 3.16). Never-
theless, some significative differences appear between the induced spectral sequence and
the weight spectral sequence. In particular, the equivariant weight spectral sequence is
no longer left bounded (Corollaries 3.19 and 3.20). As a consequence, the long exact se-
quences of additivity provided by the equivariant weight spectral sequence are not finite
in general. Moreover, the equivariant weight spectral sequence of a compact nonsingular
variety does not degenerate at level two in general (Proposition 3.23). This prevents us
to recover some additive invariants directly from the page two of the equivariant weight
spectral sequence, unlike the non-equivariant set-up.

In the final part of this work, we identify finite additive invariants in terms of
bounded long exact sequences of spectral sequences, provided by bounded double com-
plexes which extend the additivity of the Nash-constructible filtration and of the weight
spectral sequence, and are related to the equivariant weight spectral sequence. In the
case of the two-elements group, we use the Smith Nash-constructible exact sequence to
identify additive invariants involving the geometry of invariant chains and the geometry
of the fixed points set. We then show that they coincide with G. Fichou’s additive equiv-
ariant virtual Betti numbers ([6]) in some cases (Theorem 4.8). After having recovered
the equivariant virtual Betti numbers for G = Z/2Z by using the equivariant extension
criterion (Theorem 2.4) on invariant chains, we finally highlight sufficient conditions for
the Nash-constructible filtration to compute them.

We begin this paper by recalling the principal definitions and properties from [15]
about the weight complex with action that we will need. In particular, we give the
equivariant extension criterion and the Smith Nash-constructible short exact sequence
for an algebraic involution.

In Section 3, after some reminders about group cohomology and homology, we define
a functor computing group homology and equivariant homology. Showing the compat-
ibility of this functor with filtered categories, we apply it to the weight complex with
action to obtain the equivariant weight complex. We then study the induced spectral
sequence. We give also some examples for the computation of the equivariant weight
filtration, and justify that the odd-order group case is the simple case.

Finally, in Section 4, we explain how we obtain additive invariants from double
complexes induced by the Nash-constructible filtration and group cohomology. In some
cases, we recover the equivariant virtual Betti numbers. In the last paragraph, we recover
all of these for G = Z/2Z, considering the invariant chains.
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2. Weight complex with action.

In this section, we recall the important results from [15], in particular the existence
and uniqueness of the weight complex with action (Theorem 2.3) and the exactness of
what we called the Smith Nash-constructible short sequence for an involution (Theorem
2.6).

For the reader’s convenience, we first recall the definition of the complex of semial-
gebraic chains with closed supports, before equipping it with a group action.

2.1. Semialgebraic chains with action.
We recall the definition from [14], Appendix, of the semialgebraic chains with closed

supports of a semialgebraic subset X of the set of real points of a real algebraic variety.
Here, a real algebraic variety is a reduced separated scheme of finite type over R.

Definition 2.1. For all k ≥ 0, we denote by Ck(X) the quotient of the Z2-vector
space generated by the closed semialgebraic subsets of X of dimension ≤ k, by the
relations

• the sum A + B is equivalent to the closure clX(A÷ B) in X (with respect to the
strong topology) of the symmetric difference of A and B,

• the class of A is zero if the dimension of A is strictly smaller than k.

A semialgebraic chain with closed supports of dimension k is by definition an equivalence
class of Ck(X). Any chain c of Ck(X) can be written as the class of a closed semialgebraic
subset A of X of dimension ≤ k, denoted by [A].

The boundary operator ∂k : Ck(X) → Ck−1(X) is defined by ∂kc = [∂A], if c = [A] ∈
Ck(X), where ∂A denotes the semialgebraic boundary {x ∈ A | Λ1A(X) ≡ 1 mod 2} of
A (Λ is the link on the constructible functions, cf. [12]).

Consider now a group G acting on X by semialgebraic homeomorphisms. By functo-
riality of the semialgebraic chains with closed supports, an action by linear isomorphisms
is induced on the complex C∗(X).

The complex C∗(X) equipped with this action becomes a G-complex, that is the
induced action of G on C∗(X) commutes with its differential. Moreover, the semial-
gebraic chains with action are functorial with respect to equivariant proper continuous
semialgebraic maps, and the operations of equivariant restriction, closure and pullback
are equivariant.

For more details about semialgebraic chains, we refer to the appendix of [14], and
for their equivariance, to the second section of [15].

2.2. Weight complex with action.
Let G be a finite group.
We give the steps that led us to the construction and the uniqueness of the weight

complex with action in [15], notably an equivariant version of the extension criterion [7,
Théorème 2.2.2] of F. Guillén and V. Navarro Aznar (Theorem 2.4).
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The next definition is about notations for the equivariant categories we are working
in.

Definition 2.2. We denote by

• SchG
c (R) the category of real algebraic varieties equipped with an action of G

by algebraic isomorphisms—we call such objects real algebraic G-varieties—and
equivariant regular proper morphisms,

• RegG
comp(R) the subcategory of compact nonsingular G-varieties,

• VG(R) the subcategory of projective nonsingular G-varieties.

We denote also by

• CG the category of bounded G-complexes of Z2-vector spaces equipped with an
increasing bounded filtration by G-complexes with equivariant inclusions—we call
such objects filtered G-complexes—and equivariant morphisms of filtered com-
plexes,

• DG the category of bounded G-complexes and equivariant morphisms of complexes.

By an action of G by algebraic isomorphisms on a real algebraic variety X, we mean
an action by isomorphisms of schemes such that the orbit of any point in X is contained
in an affine open subscheme.

For any real algebraic G-variety X, we will denote by C∗(X) the semialgebraic chain
G-complex of the set of real points of X.

In [15, Théorème 3.5], we defined the weight complex with action of G on the
category of real algebraic G-varieties, by equipping McCrory–Parusiński’s weight complex
([14, Theorem 1.1]) with the action induced by functoriality:

Theorem 2.3 ([15, Théorème 3.5]). The functor

F canC∗ : VG(R) −→ Ho CG; X 7→ F canC∗(X)

admits an extension to a functor

GWC∗ : SchG
c (R) −→ Ho CG

defined for all real algebraic G-varieties and all equivariant proper regular morphisms,
which satisfies the following properties:

1. Acyclicity : for any acyclic square

Ỹ //

²²

X̃

π

²²
Y

i // X

(2.1)

in SchG
c (R) (that is a commutative diagram (2.1) of objects and morphisms of

SchG
c (R) such that i is an equivariant inclusion of a closed subvariety, Ỹ = π−1(Y )
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and the restriction π : X̃ \ Ỹ → X \ Y is an equivariant isomorphism), the simple
filtered complex of the ¤+

1 -diagram in CG

GWC∗(Ỹ ) //

²²

GWC∗(X̃)

²²
GWC∗(Y ) // GWC∗(X)

is acyclic (i.e. isomorphic to the zero complex in Ho CG).
2. Additivity : for an equivariant closed inclusion Y ⊂ X, the simple filtered complex of

the ¤+
0 -diagram in CG

GWC∗(Y ) → GWC∗(X)

is isomorphic to GWC∗(X \ Y ).

Such a functor GWC∗ is unique up to a unique isomorphism of Ho CG.

The filtration F can is the canonical filtration of bounded chain complexes (see [3]
and also [14]) and Ho CG denotes the category CG localised with respect to equivariant
filtered quasi-isomorphisms, that we will sometimes call quasi-isomorphisms of CG, i.e.
the equivariant filtered morphisms between filtered G-complexes that induce an equiv-
ariant isomorphism at the level E1 of the induced spectral sequences.

In order to show the uniqueness of the weight complex with action GWC∗, we
used an equivariant version of the extension criterion [7, Théorème 2.2.2] of Guillén
and Navarro Aznar (that McCrory and Parusiński used to show the uniqueness of their
weight complex, see [14, Theorem 1.1]), which justifies the restriction to the case of a
finite group, for which there exist an equivariant compactification, an equivariant Chow–
Hironaka lemma and an equivariant resolution of singularities in the category SchG

c (R)
(by [5, Appendix]):

Theorem 2.4 ([15, Théorème 3.5]). Let A be a category of cohomological descent
and

F : VG(R) −→ HoA

be a contravariant Φ-rectified functor verifying

(F1) F (∅) = 0, and the canonical morphism F (X t Y ) → F (X) × F (Y ) is an isomor-
phism (in HoA),

(F2) if X• is an elementary acyclic square of VG(R), then sF (X•) is acyclic.

Then, there exists an extension of F to a contravariant Φ-rectified functor

Fc : SchG
c (R) → HoA

such that :
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1. if X• is an acyclic square of SchG
c (R), then sFc(X•) is acyclic,

2. if Y is a closed subvariety of X stable under the action of G on X, we have a natural
isomorphism (in HoA)

Fc(X \ Y ) ∼= s(Fc(X) → Fc(Y )).

Furthermore, this extension is unique up to a unique isomorphism.

Remark 2.5. • For every real algebraic G-variety X, we have an equivariant
isomorphism Hn(GWC∗(X)) ∼= Hn(X) for all n ∈ Z.

• The weight filtration and the weight spectral sequence are equipped with the action
of G induced by the G-action on the weight complex.

• McCrory and Parusiński’s geometric/Nash-constructible filtration on real algebraic
varieties ([14, Sections 2 and 3]), equipped with the action of G induced by func-
toriality, realizes the weight complex with action.

• If X is a compact nonsingular G-variety, GWC∗(X) is isomorphic to F canC∗(X)
in Ho CG, and the same goes for all the realizations of the weight complex with
action, in particular for the geometric/Nash-constructible filtration with action.

For more details about the weight complex with action, we refer to [15, Section 3].
In the following, the weight complex with action will be simply denoted by WC∗ if

the context is explicit.

2.3. The Smith Nash-constructible exact sequence in the case G = Z/2Z.
In the last paragraph of this section, we recall a result from [15, Section 5]: one can

use the Nash-constructible filtration to implement a notion of regularity into the Smith
short exact sequence of a real algebraic variety equipped with an involution.

More precisely, let X be a real algebraic variety equipped with an algebraic involution
σ, then any invariant chain can be split with some regularity into two parts exchanged
by the action of G := {1, σ} = Z/2Z (modulo the restriction to the fixed points set of
X):

Theorem 2.6 ([15, Théorème 5.5]). Let c ∈ (NαCk(X))G be a chain of X of
dimension k and of index α with respect to the Nash-constructible filtration. Then there
exists c′ ∈ Nα+1Ck(X) such that

c = c|XG + (1 + σ)c′

(the restriction c|XG is in NαCk(XG)).
Consequently, for all α, the short sequence of complexes

0 → NαC∗(XG)⊕ (1 + σ)Tα+1
∗ (X) → NαC∗(X) → (1 + σ)NαC∗(X) → 0,

where Tα+1
k (X) := {c ∈ Nα+1Ck(X) | (1 + σ)c ∈ NαCk(X)}, is exact. We call this

sequence the Smith Nash-constructible exact sequence of X of index α.
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The last property we recall is an interpretation of the Smith Nash-constructible
exact sequence when the variety X is compact and the action of G is free. In this
case, the quotient of the set of real points of X, denoted by XR, by the action of G is an
arc-symmetric set and the invariant chains of X correspond to the chains of the quotient:

Proposition 2.7 ([15, Proposition 5.6]). Let X be a compact real algebraic variety
equipped with a fixed-point free action of G = Z/2Z. Then the morphism of filtered
complexes

(NC∗(X))G → NC∗(XR/G),

induced by the quotient map π : XR → XR/G, is a filtered isomorphism (recall that by
definition NC∗(X) = NC∗(XR)).

3. Equivariant weight filtration for real algebraic G-varieties.

Let G be a finite group.
In this section, we construct a weight filtration on the equivariant homology of real

algebraic G-varieties defined by J. van Hamel in [17], applying on the weight complex
with action some functor which computes this equivariant homology when applied to the
complex of semialgebraic chains with closed supports (Definition and Proposition 3.4,
Definition 3.11).

Significative differences will appear between the equivariant weight complex and
the weight complex. In particular, unlike McCrory and Parusiński’s weight spectral
sequence ([14, Section 1.3]), the equivariant weight spectral sequence may not be bounded
(Example 3.24) and may not degenerate at level two in the compact nonsingular case
(Proposition 3.23, Example 3.13).

Nevertheless, equivariant homology will provide us other spectral sequences (trivial
in the non-equivariant case) useful to understand the equivariant geometry involved in
the equivariant weight spectral sequence (Proposition 3.17).

3.1. Group (co)homology and the functor L.
In the first paragraph, we recall the basic background about group (co)homology

with coefficients in a module and a chain complex, which we will use to define the
equivariant homology of a real algebraic variety with action.

If M is a Z[G]-module, the nth group of cohomology of the group G with coefficients
in M is given by

Hn(G,M) := Extn
Z[G](Z,M) = Hn(HomZ[G](F∗,M)),

where F∗ is a projective resolution of Z by Z[G]-modules.

Remark 3.1. • For n < 0, Hn(G,M) = 0.
• If k is a ring and if M is a k[G]-module, then for all n ∈ Z,

Hn(G,M) = Extn
Z[G](Z,M) ∼= Extn

k[G](k, M),
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by an isomorphism of k-modules. In the rest of this paper, we will be considering
Z2-vector spaces equipped with a linear action of G, so there will be no difference in
considering a projective resolution of Z by Z[G]-modules or a projective resolution
of Z2 by Z2[G]-modules.

Example 3.2 ([1]). Let G be a finite cyclic group of order d generated by σ. Then,
if we denote N :=

∑
1≤i≤d σi, a projective resolution of Z by Z[G]-modules is given by

· · · −→ Z[G] σ−1−−−→ Z[G] N−→ Z[G] σ−1−−−→ Z→ 0,

and the cohomology of G with coefficients in a Z[G]-module M by

Hn(G,M) =





MG/NM if n is an even positive integer,

ker(M N−→ M)/(σ − 1)M if n is an odd positive integer,

MG if n = 0.

Example 3.3. If G = Z/2Z and if M is a Z2[G]-module, the cohomology of G

with coefficients in M is

Hn(G,M) =





MG if n = 0,

MG

(1 + σ)M
if n > 0.

For more details and background about group cohomology, see for instance [1] or
[2].

Now we define the homology of G with coefficients in a chain G-complex of Z2-
vector spaces, using a functorial operation denoted by L. We denote by D− the category
of bounded above chain complexes of Z2-vector spaces, and HoD− the category D−
localised with respect to quasi-isomorphisms.

Definition and Proposition 3.4. Let K∗ be in DG. Let · · · → F2
∆2−−→ F1

∆1−−→
F0 → Z→ 0 be a resolution of Z by projective Z[G]-modules.

Then the complex L∗(K∗) is defined as the total complex associated to the double
complex

(HomG(F−p,Kq))p,q∈Z.

The operation L : DG → D− ; K∗ 7→ L∗(K∗) is functorial.

Remark 3.5. For G = {e}, considering · · · → 0 −→ 0 −→ Z id−→ Z → 0 as a
projective resolution, we obtain L∗(K∗) = K∗.

The homology of the group G with coefficients in a G-complex K∗ is then defined
as the homology of the complex L∗(K∗) and denoted by H∗(G,K∗).

The two spectral sequences associated to the double complex (Hom(F−p, Cq))p,q∈Z
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converge to this homology:

IE
2
p,q = H−p(G,Hq(K∗))

IIE
1
p,q = H−p(G,Kq)

}
=⇒ Hp+q(G,K∗).

The first spectral sequence is called the Hochschild–Serre spectral sequence associated
to the group G and the G-complex K∗. Notice that, in particular, since the group
cohomology with coefficients in a module does not depend on the considered projective
resolution (of Z by Z[G]-modules or of Z2 by Z2[G]-modules), neither do the group
homology with coefficients in a G-complex of DG and the functor DG → HoD− ; K∗ 7→
L∗(K∗) (also denoted by L for convenience).

The Hochschild–Serre spectral sequence also allows to prove that L preserves quasi-
isomorphisms:

Proposition 3.6. An equivariant quasi-isomorphism f : K∗ → M∗ induces an
isomorphism H∗(G,K∗) → H∗(G,M∗).

Proof. The equivariant quasi-isomorphism f induces an isomorphism from the
level IE

2 of the induced Hochschild–Serre spectral sequences, which converge to the
homologies of G with coefficients in K∗ and M∗ respectively. ¤

We also denote by L the induced functor HoDG → HoD−.
Furthermore, we show that if we apply the functor L to a complex of CG, we can

obtain a filtered complex, and that this operation preserves filtered quasi-isomorphisms.
Let C− denote the category of bounded above complexes of Z2-vector spaces equipped

with an increasing bounded filtration, and morphisms of filtered complexes.

Proposition 3.7. Let (K∗, J) be in CG. The equivariant increasing bounded fil-
tration J of the G-complex K∗ induces an increasing bounded filtration J on the complex
L∗(K∗), defined by

JαLk(K∗) := Lk(JαK∗).

In Ho C−, the couple (L∗(K∗),J ) is independent from the chosen projective resolu-
tion.

Proof. We show that two projective resolutions induce quasi-isomorphic filtered
complexes in C−.

Let (Fi)i and (F ′j)j be two resolutions of Z or Z2 by projective Z[G]-modules, respec-
tively Z2[G]-modules. We denote by JL∗(K∗) and J ′L′∗(K∗) the respectively associated
filtered complexes, and by Er and E′r the respectively induced spectral sequences.

We have

E0
p,q =

JpLp+q

Jp−1Lp+q
=

⊕
a+b=p+q HomG(F−a, JpKb)⊕

a+b=p+q HomG(F−a, Jp−1Kb)
=

⊕

a+b=p+q

HomG

(
F−a,

JpKb

Jp−1Kb

)
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because the G-modules Fi are projective. Then we have E0
p,∗ = Lp+∗(JpK∗/Jp−1K∗) and

E
′0
p,∗ = L′p+∗(JpK∗/Jp−1K∗) for all p ∈ Z. The homologies of these two complexes give

the homology of the group G with coefficients in the complex JpK∗/Jp−1K∗, inducing
an isomorphism between E1 and E′1. ¤

We use this computation to show that the functor L preserves filtered quasi-
isomorphisms:

Proposition 3.8. The operation L induces a functor

Ho CG → Ho C− ; (K∗, J) 7→ (L∗(K∗),J ),

that we also denote by L.

Proof. Let ϕ : K∗ → M∗ be a quasi-isomorphism in CG and J and I be the
respective filtrations of K∗ and M∗. We have

E0(L∗(K∗))
p,q = Lp+q

(
E

0(K∗)
p,∗−p

)
and E0(L∗(M∗))

p,q = Lp+q

(
E

0(M∗)
p,∗−p

)
.

But, for all p ∈ Z, the morphism ϕ : K∗ → M∗ induces an equivariant quasi-isomorphism
E

0(K∗)
p,∗−p → E

0(M∗)
p,∗−p , and then we use the fact that L preserves quasi-isomorphisms to

conclude. ¤

We then apply L to the canonical filtration. The induced spectral sequence coincides
with the Hochschild–Serre spectral sequence:

Lemma 3.9. Let (K∗, ∂∗) be a G-complex equipped with the canonical filtration
F can. We consider the induced filtered complex FcanL∗(K∗), and denote by E the induced
spectral sequence.

Then we have, for all p, q ∈ Z,

E1
p,q = H−2p−q(G,H−p(K∗)),

and, for all r ≥ 1,

Er
p,q = IE

r+1
2p+q,−p.

Proof. Let (F∗,∆∗) be a projective resolution over Z[G] of Z. Let p ∈ Z.
By a direct computation and using the fact that the Fi’s are projective Z[G]-modules,

one can see that the complex E0
p,∗−p is the mapping cone of the morphism

φ : HomG

(
F−(p+∗),K−p+1/ ker ∂−p+1

) → HomG

(
F−(p+∗), ker ∂−p

)
.

On the other hand, because the Fi’s are projective Z[G]-modules, the short sequence of
complexes
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0 → HomG

(
F−(p+∗),K−p+1/ ker ∂−p+1

) → HomG

(
F−(p+∗), ker ∂−p

)

→ HomG

(
F−(p+∗),H−p(K∗)

) → 0

is exact.
Considering now the induced long exact sequences in homology and using the five

femma, we obtain that, for all p, q ∈ Z,

E1
p,q = Hp+q

(
E0

p,∗−p

) ∼= Hp+q

(
HomG(F−(p+∗),H−p(K∗))

)
= H−2p−q(G,H−p(K∗)).

The spectral sequence E and the Hochschild–Serre spectral sequence are then natu-
rally isomorphic (modulo reindexing) because of the naturality of the above isomorphism
and because the differentials of both spectral sequences are induced by the same mor-
phisms. ¤

We end this paragraph with an essential point: the functor L commutes with the
operation which associates to any cubical diagram in CG (resp. C−) its simple filtered
complex. For the definition of a cubical diagram and the associated simple filtered
complex, see [14, Section 1].

Proposition 3.10. If K is a cubical diagram of type ¤+
n in CG, then s(L∗(K)) =

L∗(sK) (in C− if we consider the same projective resolution on both sides).

Proof. Direct computation. ¤

3.2. Equivariant weight complex.
Applying the functor L to the weight complex with action (Theorem 2.3), we obtain

the equivariant weight complex which will induce a weight filtration on the equivariant
homology we define in Definition 3.11 below.

Definition 3.11. Let X be a real algebraic G-variety. We denote CG
∗ (X) :=

L∗(C∗(X)) and, for n ∈ Z, we associate to X

Hn(X;G) := Hn(G,C∗(X)) = Hn(CG
∗ (X)),

its nth equivariant homology group, where C∗(X) is the G-complex of semialgebraic
chains with closed supports of the set of real points of X.

Remark 3.12. • The Hochschild–Serre spectral sequence

IE
2
p,q = H−p(G,Hq(X)) ⇒ Hp+q(X;G)

allows one to understand this equivariant homology from a geometrical point of
view: it involves the geometry of the considered real algebraic G-variety, the ge-
ometry of the action and the geometry of the group G itself.

• This equivariant homology is the same as J. van Hamel’s equivariant homology
defined in [17, Chapter III Definition 1.2] (at least for compact real algebraic
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G-varieties).
• For G = {e}, Hn(X;G) = Hn(X).

Example 3.13. We use the Hochschild–Serre spectral sequence to compute the
equivariant homology of the 2-dimensional sphere X given by the equation x2+y2+z2 = 1
in R3, equipped with the action of G = Z/2Z given by σ : (x, y) 7→ (−x, y).

The page IE
2(X) is

· · · Z2[X] · · · Z2[X] Z2[X]
· · · 0 · · · 0 0
· · · Z2[{p0}] · · · Z2[{p0}] Z2[{p0}]

where p0 is a point of X, that we choose in the fixed points set XG. Then, since the
differentials of the rows of the double complex inducing the spectral sequence are 1 + σ,
we have IE

2(X) = IE
∞(X) and

Hk(X;G) =

{
Z2[X] if k = 1 or 2,

Z2[X]⊕ Z2[{p0}] if k ≤ 0.

If we consider now the fixed point free G-action on X given by σ : (x, y) 7→ (−x,−y),
the page IE

2(X) is the same (with p0 being any point of X), but the differentials d3 are
not trivial (we have d3([{p0}]) = [X]). Consequently, with respect to this action, the
Hochschild–Serre spectral sequence degenerates at page IE

4(X):

· · · 0 · · · 0 Z2[X] Z2[X] Z2[X]
· · · 0 · · · 0 0 0 0
· · · 0 · · · 0 0 0 0

and

Hk(X;G) =

{
Z2[X] if k = 0, 1 or 2,

0 if k < 0.

The second spectral sequence

IIE
1
p,q = H−p(G,Cq(X)) ⇒ Hp+q(X;G)

associated to the equivariant homology can also be useful, as in the following case:

Lemma 3.14. Let G = Z/2Z. Then, for all real algebraic G-varieties X and all
k ∈ Z,

Hk(X;G) = (ker ∂k)G/∂k+1((Ck+1(X))G)⊕
⊕

i≥k+1

Hi(XG).
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Proof. The equivariant homology is the homology of the total complex associated
to the double complex

Cd(X)oo

∂d
²²

Cd(X)
1+σoo

∂d
²²

Cd(X)
1+σoo

∂d
²²

Cd−1(X)oo

∂d−1
²²

Cd−1(X)
1+σoo

∂d−1
²²

Cd−1(X)
1+σoo

∂d−1
²²

··
·

∂2
²²

··
·

∂2
²²

··
·

∂2
²²

C1(X)oo

∂1
²²

C1(X)
1+σoo

∂1
²²

C1(X)
1+σoo

∂1
²²

C0(X)oo C0(X)
1+σoo C0(X)

1+σoo

where d is the dimension of X. Using the Smith short exact sequence

0 → C∗(XG)⊕ (1 + σ)C∗(X) → C∗(X) → (1 + σ)C∗(X) → 0

we compute the level one of the spectral sequence IIE:

· · · Cd(XG)

∂d
²²

Cd(XG)

∂d
²²

(Cd(X))G

∂d
²²

· · · Cd−1(XG)

∂d−1
²²

Cd−1(XG)

∂d−1
²²

(Cd−1(X))G

∂d−1
²²

··
·

∂2
²²

··
·

∂2
²²

··
·

∂2
²²

· · · C1(XG)

∂1
²²

C1(XG)

∂1
²²

(C1(X))G

∂1
²²

· · · C0(XG) C0(XG) (C0(X))G

The page IIE
2 is

· · · Hd(XG) Hd(XG) (ker ∂d)G

· · · Hd−1(XG) Hd−1(XG) (ker ∂d−1)G/∂d((Cd(X))G)
...

...
...

· · · H1(XG) H1(XG) (ker ∂1)G/∂2((C2(X))G)

· · · H0(XG) H0(XG) (C0(X))G/∂1((C1(X))G)
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and the differentials IId
r for r ≥ 2 all vanish because any element of IIE

r
p,q with p < 0

and 0 ≤ q ≤ d can be represented by a cycle. Consequently, the spectral sequence IIE

degenerates at level two and, since it converges to the equivariant homology of X, we
have

Hk(X;G) = (ker ∂k)G/∂d((Ck+1(X))G)⊕
⊕

i≥k+1

Hi(XG)

for all k ∈ Z. ¤

In Definition 3.15 below, we define the equivariant weight complex. Recall that the
weight complex with action has values in the localised category Ho CG. As a consequence,
we can apply the functor L : Ho CG → Ho C−.

Definition 3.15. Let X be a real algebraic G-variety. We denote

ΩCG
∗ (X) := L∗(WC∗(X)) ∈ Ho C−,

and we call this filtered complex the equivariant weight complex of X.

For any real algebraic G-variety X, we denote FcanCG
∗ (X) := L∗(F canC∗(X)). The

equivariant weight complex is the unique acyclic and additive extension to SchG
c (R) of

the functor FcanCG
∗ : VG(R) → Ho C−, in the following meaning:

Theorem 3.16. The operation

ΩCG
∗ : SchG

c (R) → Ho C− ; X 7→ ΩCG
∗ (X)

is a functor, which extends the functor

FcanCG
∗ : VG(R) → Ho C− ; X 7→ FcanCG

∗ (X),

to SchG
c (R) and verifies the following properties:

1. Acyclicity : for any acyclic square (2.1) in SchG
c (R), the simple filtered complex of the

¤+
1 -diagram in C−

ΩCG
∗ (Ỹ ) //

²²

ΩCG
∗ (X̃)

²²
ΩCG

∗ (Y ) // ΩCG
∗ (X)

is acyclic.
2. Additivity : for any equivariant closed inclusion Y ⊂ X, the simple filtered complex of

the ¤+
0 -diagram in C−

ΩCG
∗ (Y ) → ΩCG

∗ (X)
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is isomorphic to ΩCG
∗ (X \ Y ) in Ho C−.

Furthermore, any other functor SchG
c (R) → Ho C− verifying these three properties is

isomorphic to ΩCG
∗ in Ho C−, via a unique quasi-isomorphism of C−.

Proof. The equivariant weight complex ΩCG
∗ is the composition of the weight

complex with action GWC∗ with the functor L : Ho CG → Ho C−. In particular, it is
an extension to SchG

c (R) of the composition of the functors F canC∗ : VG(R) −→ Ho CG

and L : Ho CG → Ho C−.
Moreover, it verifies the acyclicity and additivity properties because so does the

weight complex with action (Theorem 2.3) and because the functor L commutes with
the operation s (Proposition 3.10).

Now, we show the uniqueness of the equivariant weight complex with respect to
these properties, using the Theorem 2.4 applied to the category C− and the functor
FcanCG

∗ : VG(R) → Ho C−.
Indeed,

• The category C− is a category of homological descent ([7, Propriété (1.7.5)]).
• The functor FcanCG

∗ : VG(R) → Ho C− is Φ-rectified because, fixing a projective
resolution of Z by Z[G]-modules (of Z2 by Z2[G]-modules), it is defined on C−.

• It verifies condition (F1): the functor F canC∗ : VG(R) → Ho CG verifies (F1) in
Ho CG and, for any bounded G-complexes K∗ and M∗, we have L∗(K∗ ⊕M∗) =
L∗(K∗)⊕ L∗(M∗).

• It verifies condition (F2): the functor F canC∗ : VG(R) → Ho CG verifies (F2) in
Ho CG and the functor L commutes with s. ¤

The homology of the equivariant weight complex of a real algebraic G-variety X

is the equivariant homology of X. Indeed, let us consider the forgetful functor of the
filtration C− → D−, which induces a functor ϕ− : Ho C− → HoD−. We have

ϕ− ◦ ΩCG
∗ = L ◦ (ϕG ◦ GWC∗)

(where ϕG : Ho CG → HoDG is the functor induced by the forgetful functor CG → DG).
Since the functor ϕG ◦ GWC∗ is quasi-isomorphic to C∗ in DG (see Remark 2.5

and [15, Remarque 3.9]), the complex ϕ−(ΩCG
∗ (X)) = L∗(ϕG(GWC∗(X))) is quasi-

isomorphic to L∗(C∗(X)) = CG
∗ (X) (the functor L preserves quasi-isomorphisms) and,

for all n ∈ Z,

Hn(ΩCG
∗ (X)) = Hn(X;G).

Consequently, the equivariant weight complex induces a filtration on the equivariant
homology of real algebraic G-varieties, that we call the equivariant weight filtration. We
denote it by Ω.

3.3. Equivariant weight spectral sequence(s).
The equivariant weight complex induces a spectral sequence, that we call the equiv-

ariant weight spectral sequence and denote by {GEr, Gdr}, which converges to the equiv-
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ariant weight filtration. We reindex it, setting, as in [14, Section 1.3],

p′ = 2p + q, q′ = −p, r′ = r + 1,

and we denote by GẼr′
p′,q′ the reindexed equivariant weight spectral sequence.

As in the non-equivariant framework, we can read the acyclicity and additivity
conditions of the equivariant weight complex on the equivariant weight spectral sequence:
for example, if Y ⊂ X is an equivariant closed inclusion, we have a long exact sequence

· · · → GẼ2
p,q(Y ) → GẼ2

p,q(X) → GẼ2
p,q(X \ Y ) → GẼ2

p−1,q(Y ) → · · · (3.1)

for all q ∈ Z (the proof runs as in the non-equivariant case: see [14, Section 1.3]). Never-
theless, there are some significative differences between the weight spectral sequence and
the equivariant weight spectral sequence. In particular, the equivariant weight spectral
sequence is not left bounded (as a consequence, the additivity long exact sequences are
not bounded either) and, on compact nonsingular varieties, it does not degenerate at
level two in general (Proposition 3.23 and Example 3.13).

In Proposition 3.17 below, we express the level two of the equivariant weight spectral
sequence as the homology of the group G with coefficients in the weight spectral sequence.
From this fact, we deduce bounds for the equivariant weight spectral sequence (Corollary
3.20) and equivariant weight filtration (Corollary 3.21). Furthermore, one can then
extract from the equivariant weight spectral sequence two other spectral sequences. We
will recover finite long exact sequences of additivity from one of these in Section 4.

Proposition 3.17. For all p, q in Z,

GẼ2
p,q = Hp

(
G, Ẽ1

∗,q
)
.

Proof. We have GE1
p,q = Hp+q

(
GE0

p,∗−p

)
and

GE0
p,∗−p = E

0(L∗(WC∗(X)))
p,∗−p = L∗

(
E

0(WC∗(X))
p,∗−p

)
,

then GE1
p,q = Hp+q(G,E0

p,∗−p). ¤

This allows one to consider the two spectral sequences

q
I E

2
α,β = H−α

(
G, Ẽ2

β,q

)
,

q
II E

1
α,β = H−α

(
G, Ẽ1

β,q

)

which both converge to GẼ2
α+β,q = Hα+β

(
G, Ẽ1

∗,q
)
.

Remark 3.18. The spectral sequence q
II E depends on the chosen representative

of the weight complex with action at the chain level.

Let X be a real algebraic G-variety of dimension d. We take a look at the terms of
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the dth row of the reindexed equivariant weight spectral sequence:

Corollary 3.19. For all p ∈ Z,

GẼ2
p,d = H−p

(
G, Ẽ2

0,d

)
.

Proof. We consider the spectral sequence

d
I E

2
α,β = H−α

(
G, Ẽ2

β,d

) ⇒ GẼ2
α+β,d.

We have Ẽ2
β,d = 0 if β 6= 0 ([14, Section 1.3]), therefore the spectral sequence collapses

at d
I E

2 and

GẼ2
p,d =

⊕

α+β=p

d
I E

2
α,β = H−p

(
G, Ẽ2

0,d

)
. ¤

In particular, notice that, in the general case, there is an infinity of non-zero terms in
the row q = d of the reindexed equivariant weight spectral sequence. Even if the reindexed
equivariant weight spectral sequence is not left bounded, we have the following bounds:

Corollary 3.20. For all r ≥ 2, p, q ∈ Z, if GẼr
p,q 6= 0 then 0 ≤ q ≤ d and

p + q ≤ d.

Proof. For all q ∈ Z, we have the spectral sequence

q
I E

2
α,β = H−α

(
G, Ẽ2

β,q

) ⇒ GẼ2
α+β,q.

If α > 0, H−α(G, · ) = 0 and, according to [14, Section 1.3], for all β ∈ Z, if Ẽ2
β,q 6= 0

then β ≥ 0, q ≥ 0 and β + q ≤ d. We conclude by noticing that if p + q > d, for all
α, β ∈ Z such that α + β = p, we have α + β + q > d and then β + q > d or α > 0. ¤

The equivariant weight filtration is bounded but the smallest non-trivial index de-
pends only on the dimension of the considered variety, which is different from the weight
filtration case.

Corollary 3.21. The equivariant weight filtration on the equivariant homology
of X is a bounded increasing filtration

0 = Ω−d−1Hk(X;G) ⊂ Ω−dHk(X;G) ⊂ · · · ⊂ Ω0Hk(X;G) = Hk(X;G).

Proof. One can prove Ω0Hk(X;G) = Hk(X;G) and Ω−d−1Hk(X;G) = 0 using
the equalities

ΩpHk(X;G) =
⊕

q≥0

GẼ∞
k+p−q,−(p−q)

and the previous Corollary 3.20. ¤
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Remark 3.22. The fact that the weight spectral sequence is left bounded is a key
tool to extract additive invariants from its level two, namely the virtual Betti numbers
(see [14, Section 1.3]). In the equivariant framework, the equivariant weight spectral
sequence’s long exact sequences of additivity are not finite and furthermore, the condi-
tion of compactness-smoothness does not imply the collapsing of the equivariant weight
spectral sequence at level two.

Proposition 3.23. Assume X to be compact and nonsingular. Then the equivari-
ant weight spectral sequence GẼ of X coincides, from level two, with the Hochschild–Serre
spectral sequence

IE
2
p,q(X) = H−p (G,Hq(X)) ⇒ Hp+q(X;G)

associated to X and G.

Proof. If X is compact nonsingular, the weight complex with action GWC∗(X)
is quasi-isomorphic to F canC∗(X) in CG. Since the functor L preserves filtered quasi-
isomorphisms, the equivariant weight complex ΩCG

∗ is quasi-isomorphic to FcanCG
∗ =

FcanL∗(C∗) in C− on compact nonsingular real algebraic G-varieties (the same goes for
any realization of the equivariant weight complex in CG).

Then we use Lemma 3.9 to conclude that, after reindexing, the equivariant weight
spectral sequence of X is isomorphic to the Hochschild–Serre spectral sequence of X from
level two. ¤

In particular, even in the case of a compact nonsingular variety, the equivariant
weight spectral sequence may not degenerate at level two: see Example 3.13.

Below, we compute the equivariant weight spectral sequences and equivariant weight
filtrations of a singular real algebraic variety equipped with two different algebraic invo-
lutions.

Example 3.24. Let X be the real algebraic curve given by the equation y2 =
x2 − x4 in R2.

1. We consider the action of G = Z/2Z on X given by the involution σ : (x, y) 7→ (−x, y).
The page Ẽ2(X) of the reindexed weight spectral sequence is given by

Z2[X]

Z2[{p0}] Z2[X1]

where p0 = (0, 0) is the unique point of X being fixed under the action of G, and X1

and X2 are the two 1-cycles of X, exchanged by the action.
We have

• GẼ2
p,1 = H−p

(
G, Ẽ2

0,1

)
= Z2[X] if p ≤ 0, and 0 otherwise.

• the terms GẼ2
p,0(X) are given by the Hochschild–Serre spectral sequence associated

to the G-complex Ẽ1
∗,0(X): the level two of this spectral sequence is
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· · · Z2[X1] · · · Z2[X1] Z2[X1]

· · · Z2[{p0}] · · · Z2[{p0}] Z2[{p0}]

and since the differentials are trivial, we have

GẼ2
p,0(X) =





Z2[X1] if p = 1,

Z2[X1]⊕ Z2[{p0}] if p ≤ 0,

0 otherwise.

Consequently, the page GẼ2(X) is

· · · Z2[X] · · · Z2[X] Z2[X]

· · · Z2[X1]⊕ Z2[{p0}] · · · Z2[X1]⊕ Z2[{p0}] Z2[X1]⊕ Z2[{p0}] Z2[X1]

and the page GẼ3(X) is

· · · 0 · · · 0 Z2[X]

· · · Z2[{p0}] · · · Z2[{p0}] Z2[{p0}] 0

because Gd̃2([X1]) = ∂ ⊕ (1 + σ)([X1]) = [X] and Gd̃2([{p0}]) = 0.
As a consequence, the equivariant weight spectral sequence GẼ(X) collapses at

GẼ3(X) and the equivariant weight filtration of X with respect to the action of σ is
given by

Ω−1H1(X;G) = Ω0H1(X;G) = Z2[X]

and

0 = Ω−1Hk(X;G) ⊂ Ω0Hk(X;G) = Z2[{p0}]

for k ≤ 0.
2. If now we consider the action of G given by (x, y) 7→ (x,−y), we obtain the same

terms for the page GẼ2(X):

· · · Z2[X] · · · Z2[X] Z2[X]

· · · Z2[X1]⊕ Z2[{p0}] · · · Z2[X1]⊕ Z2[{p0}] Z2[X1]⊕ Z2[{p0}] Z2[X1]

However, here, Gd̃2([X1]) = 0 because the cycle X1 is globally invariant under the
action. As a consequence, the differential Gd̃2 is trivial and the equivariant spec-
tral sequence of X degenerates at GẼ2(X). The equivariant weight filtration on the
equivariant homology of X is then given by

Z2[X] = Ω−1H1(X;G) ⊂ Ω0H1(X;G) = Z2[X1]⊕ Z2[X2]
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and

Z2[X] = Ω−1Hk(X;G) ⊂ Ω0Hk(X;G) = Z2[X1]⊕ Z2[X2]⊕ Z2[{p0}]

for k ≤ 0.

3.4. The odd-order group case.
If the order of the group G is odd, the equivariant weight spectral sequence corre-

spond to the elements of the weight spectral sequence being invariant under the action of
G, allowing one, in particular, to extract additive invariants. This is because the chains
we consider have coefficients in Z2: if the order of G is odd, the ring Z2[G] is semi-simple
according to Maschke theorem (see for example [2, Theorem 2.1.1]).

Consequently, every Z2[G]-module is projective (and injective). Then

· · · → 0 → Z2 → Z2 → 0 (3.2)

is a projective resolution of Z2 over Z2[G] and the cohomology of G with coefficients in
a Z2[G]-module M is Hn(G,M) = HomZ2[G](Z2,M) = MG for n = 0, and 0 otherwise.

Furthermore, the semi-simplicity of Z2[G] is equivalent to the condition that ev-
ery short exact sequence of Z2[G]-modules is split. In particular, the functor ΓG that
associates to any Z2[G]-module the set of its invariant elements is exact.

Let G be a group of odd order. Choosing the trivial resolution (3.2) of Z2 as a
projective resolution over Z2[G], in the double complex associated to the functor L, the
column p = 0 is the only one which is potentially non-zero and then, for any G-complex
K∗,

L∗(K∗) = (K∗)G

and

H∗(G,K∗) = Hn(L∗(K∗)) = Hn((K∗)G) = (Hn(K∗))G,

(the functor ΓG is exact on the category of Z2[G]-modules).
Finally, the spectral sequences IE and IIE associated to a G-complex K∗ coincide

and collapse at level two:

IE
2
p,q = H−p(G,Hq(K∗)) =

{
(Hq(K∗))G = Hq((K∗)G) if p = 0,

0 otherwise,

IIE
2
p,q = Hq(H−p(G,K∗)) =

{
Hq((K∗)G) = (Hq(K∗))G if p = 0,

0 otherwise.

Now, if we consider a real algebraic G-variety X, we have

H∗(X;G) = H∗((C∗(X))G) = (H∗(X))G,

ΩCG
∗ (X) = (WC∗(X))G, GE(X) = (E(X))G.
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In particular, the non-zero terms of the reindexed equivariant weight spectral se-
quence of X are bounded into the triangle of vertices (0, 0), (0, d) and (d, 0) (if d is the
dimension of X). Consequently, we are able to recover the equivariant virtual Betti num-
bers (see [6] and Section 4 below) from the equivariant weight spectral sequence when
the order of the group G is odd.

Proposition 3.25. Let G be a finite group of odd order. For all real algebraic
G-varieties X and all q ∈ Z, the qth equivariant virtual Betti number of X ([6]) is the
alternating sum of the dimensions of the terms of the row q of the reindexed equivariant
weight spectral sequence:

βG
q (X) =

∑

p≥0

(−1)p dimZ2
GẼ2

p,q.

Proof. In this set-up, for q ∈ Z, the additivity long exact sequence for an equiv-
ariant closed inclusion (3.1) is finite and gives us the additivity of the right-hand side
expression. Moreover, if X is compact nonsingular, GẼ2

p,q = (Ẽ2
p,q)

G = 0 if p 6= 0 and

GẼ2
0,q =

(
Ẽ2

0,q

)G = (Hq(X))G = Hq(X;G). ¤

4. Additivity.

In previous Section 3, we could not extract finite additive invariants from the equiv-
ariant weight spectral sequence in the general case. In this Section 4, we construct
bounded double complexes kĈ, for all k ∈ Z, which extend the additivity of the Nash-
constructible filtration and of the weight spectral sequence it induces (Remark 4.1 and
Proposition 4.2). For each k ∈ Z, the columns of one of the spectral sequences induced
by kĈ are the columns of spectral sequences q

II E, the ones which converge to the level
two of the reindexed equivariant weight spectral sequence (see Subsection 3.3). We show
that these columns provide finite additive invariants in terms of bounded long exact
sequences.

We then consider the other spectral sequence the double complex kĈ induces, focus-
ing on the case of the two-elements group, for which we have the Smith Nash-constructible
exact sequence that enables its computation. The abutment of this spectral sequence in-
volves the geometry of invariant chains and the geometry of the fixed points set and each
of its columns also yields additive invariants in terms of bounded long exact sequences.
Furthermore, we prove that the Euler characteristic of this spectral sequence coincides
with the kth equivariant virtual Betti number in some cases. The equivariant virtual
Betti numbers are the unique additive invariants defined on the category of real alge-
braic G-varieties that equal the dimensions of equivariant homology groups on compact
nonsingular varieties (see [6]).

We finally discuss the relation of these additive invariants with equivariant virtual
Betti numbers in general case for G = Z/2Z. The extension Theorem 2.4 can provide a
filtered complex inducing a spectral sequence from which we can recover the equivariant
virtual Betti numbers. If the invariant semialgebraic chains equipped with the Nash-
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constructible filtration realized this filtered complex, the spectral sequence induced by
the double complex kĈ would compute the equivariant virtual Betti numbers.

4.1. The double complex kĈ.
Let G be a finite group.
Let X be a real algebraic G-variety. For the sake of readability, we simply denote

C∗(X) by C∗.
The group cohomology of G is functorial and each exact sequence 0 → Nα−1Cβ →

NαCβ → NαCβ/Nα−1Cβ → 0 induces a long exact sequence in group cohomology,
compatible with the boundary operator of C∗. Therefore, we can construct the following
bounded double complex

²² ²² ²²
H−k−(α−1)

“
G,

Nα−1Cβ+1
Nα−2Cβ+1

”

d1

²²

oo H−k−α
“

G,
NαCβ+1
Nα−1Cβ+1

”

d1

²²

d0oo H−k−(α+1)
“

G,
Nα+1Cβ+1
NαCβ+1

”

d1

²²

d0oo oo

H−k−(α−1)
“

G,
Nα−1Cβ
Nα−2Cβ

”

d1

²²

oo H−k−α
“

G,
NαCβ
Nα−1Cβ

”

d1

²²

d0oo H−k−(α+1)
“

G,
Nα+1Cβ
NαCβ

”

d1

²²

d0oo oo

H−k−(α−1)
“

G,
Nα−1Cβ−1
Nα−2Cβ−1

”

²²

oo H−k−α
“

G,
NαCβ−1
Nα−1Cβ−1

”

²²

d0oo H−k−(α+1)
“

G,
Nα+1Cβ−1
NαCβ−1

”

²²

d0oo oo

that we denote by (kĈα,β(X))(α,β)∈Z×Z. The differentials d1 are induced by the boundary
operator of C∗ and the differentials d0 are given by the following commutative diagram

H−k−(α−1)(G,Nα−1Cβ) // H−k−(α−1)
(
G,

Nα−1Cβ

Nα−2Kβ

)

H−k−α
(
G,

NαCβ

Nα−1Cβ

)

OO
d0

55jjjjjjjjjjjjjjj

H−k−α(G,NαCβ)

OO

H−k−(α+1)
(
G,

Nα+1Cβ

NαCβ

)
.oo

d0

iiTTTTTTTTTTTTTTT

Remark 4.1. For G = {e}, the double complex (kĈα,β)(α,β)∈Z×Z is reduced to the
column α = −k and the homology of this column provides the row q = k of the page two
of the reindexed weight spectral sequence of X. In particular, the Euler characteristic of
the homology of the column α = −k is the kth virtual Betti number.

Consider the induced spectral sequence k
IIÊ, computed by first taking the homology

of d1:
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k
IIÊ

1
α,β = Hβ

(
H−k−α

(
G,

NαC∗
Nα−1C∗

))
= −α

IIE
2
α+k,α+β .

Each column of the page k
IIÊ

1 is additive in the following meaning:

Proposition 4.2. Let Y ⊂ X be an equivariant closed inclusion in SchG
c (R). For

any q and i in Z, there is a finite long exact sequence

· · · → q
IIE

2
i,j(Y ) → q

IIE
2
i,j(X) → q

IIE
2
i,j(X \ Y ) → q

IIE
2
i,j−1(Y ) → · · · ,

where q
IIE

2
i,j = Hj

(
H−i(G, Ẽ1

∗,q)
)
, i, j ∈ Z, is the page two of the spectral sequence q

IIE

induced by the Nash-constructible filtration (see Paragraph 3.3).

Proof. From the exactness of the equivariant short sequences

0 → NpCk(Y ) → NpCk(X) → NpCk(X \ Y ) → 0 (4.1)

([14, Proof of Theorem 3.6] and [15, Remarque 3.9]) follows, by a diagram chase, the
exactness of the equivariant short sequences

0 → E0
p,q(Y ) → E0

p,q(X) → E0
p,q(X \ Y ) → 0 (4.2)

which then induce the long exact sequences in group cohomology

· · · → Hk
(
G,E0

p,q(Y )
) → Hk

(
G,E0

p,q(X)
)

→ Hk
(
G,E0

p,q(X \ Y )
) → Hk+1

(
G,E0

p,q(Y )
) · · · .

Since, for any k and p in Z, the short exact sequence (4.1) is split by the closure morphism
c ∈ NpCk(X \Y ) 7→ c ∈ NpCk(X), which is an equivariant morphism by [15, Proposition
2.4], so is, for any p, q ∈ Z, the short exact sequence (4.2) by the induced equivariant
morphism E0

p,q(X \ Y ) → E0
p,q(X), and the short sequence of complexes

0 → Hk
(
G,E0

p,∗(Y )
) → Hk

(
G,E0

p,∗(X)
) → Hk

(
G,E0

p,∗(X \ Y )
) → 0

is exact (by functoriality of Hk(G, · )). We obtain the result by considering the induced
long exact sequences in homology. ¤

If all the spaces k
IIÊ

1 (or equivalently all the spaces q
IIE

2
i,j such that q + i = k) are

finite-dimensional, we can define the quantity

BG
k (X) := χ

(
k

IIÊ
1
)

=
∑

q+i=k

∑

j≥0

(−1)j dimZ2
q

IIE
2
i,j(X)

and, as a consequence of the previous Proposition 4.2, we have
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Theorem 4.3. The invariants BG
k ( · ) are additive on real algebraic G-varieties on

which they are well-defined.

Remark 4.4. The additivity of the spectral sequences q
IIE and of the invariants

BG
k strongly depends on the choice of the Nash-constructible filtration to realize the

weight complex with action.

Example 4.5. 1. Let X be the real algebraic curve defined by the equation y2 =
x2 − x4 in R2 and consider the Z/2Z-action given by (x, y) 7→ (−x, y). Keeping the
notations of Example 3.24, we have

q
IIE

2
i,j(X) =





Z2[X] if q = 1, i ≤ 0 and j = 0,

Z2[X1] if q = 0, i ≤ 0 and j = 1,

Z2[{p0}] if q = 0, i ≤ 0 and j = 0,

0 otherwise,

and BG
k (X) =

{
1 if k ≤ 1,

0 otherwise.

2. Take the same variety X and equip it with the action given by (x, y) 7→ (x,−y). We
have

q
IIE

2
i,j(X) =





Z2[X] if q = 1, i ≤ 0 and j = 0,

Z2[X1] if q = 0, i = 0 and j = 1,

Z2[{p0}]⊕ Z2[{p1}] if q = 0, i ≤ 0 and j = 0,

0 otherwise,

and

BG
k (X) =





1 if k = 1,

2 if k = 0,

3 if k < 0,

0 otherwise,

(where p1 is one of the two points being invariant under the action besides p0).

Remark 4.6. In each case and for all k ∈ Z, BG
k (X) is equal to the kth equivariant

virtual Betti number βG
k (X) of X (see [6, Example 4.6]).

In the next paragraph, we study the other spectral sequence induced by the double
complex kĈ, focusing on the case G = Z/2Z. We use the Smith Nash-constructible exact
sequence (Theorem 2.6) to compute it and extract additivity from this spectral sequence
as well.

4.2. The case G = Z/2Z.
We fix G := Z/2Z.
Let X be a real algebraic G-variety and let k be an integer. We compute the

spectral sequence k
IÊ(X) induced by the double complex (kĈα,β)(α,β)∈Z×Z by first taking

the homology of d0. We use the Smith Nash-constructible short exact sequence (Theorem
2.6) to show that
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k
IÊ

1
α,β =





NαCβ(XG)
Nα−1Cβ(XG)

if − k − α ≥ 1,

(NαCβ)G

(Nα−1Cβ)G
if − k − α = 0,

0 otherwise,

and consequently, the page k
IÊ

2 is given by:

· · · Hβ+1

( NαC∗(XG)
Nα−1C∗(XG)

)
· · · Hβ+1

(N−k−1C∗(XG)
N−k−2C∗(XG)

)
Hβ+1

(
(N−kC∗)G

(N−k−1C∗)G

)

· · · Hβ

( NαC∗(XG)
Nα−1C∗(XG)

)
· · · Hβ

(N−k−1C∗(XG)
N−k−2C∗(XG)

)
Hβ

(
(N−kC∗)G

(N−k−1C∗)G

)

· · · Hβ−1

( NαCβ−1(XG)
Nα−1Cβ−1(XG)

)
· · · Hβ−1

(N−k−1C∗(XG)
N−k−2C∗(XG)

)
Hβ−1

(
(N−kC∗)G

(N−k−1C∗)G

)

(the first non-zero column from the right side is the column α = −k). In particular, the
spectral sequence

(
k
IÊ, kδ

)
degenerates at level two and one can compute the homology

of the total complex associated to the double complex kĈ.
Indeed, let ω be an element of k

IÊ
2
α,β = Hβ(NαC∗(XG)/Nα−1C∗(XG)) with α < −k.

It can be represented by a chain c ∈ NαCβ(XG) such that ∂c ∈ Nα−1Cβ−1(XG).
In order to compute the image of the element ω by kδ2, we first apply the differen-
tial d1 to its representative c in kĈα,β = H−k−α(G,NαCβ/Nα−1Cβ), where c denotes
the class of c in H−k−α(G,NαCβ/Nα−1Cβ). Then d1(c) = ∂c = 0 ∈ kĈα,β−1 =
H−k−α(G,NαCβ−1/Nα−1Cβ−1), since ∂c ∈ Nα−1Cβ−1(XG) ⊂ Nα−1Cβ−1(X). There-
fore, the zero element c′ = 0 of kĈα+1,β−1 is such that d1(c) = d0(c′), and finally
d1(c′) = 0 ∈ kĈα+1,β−2 is a representative of kδ2(ω) ∈ k

IÊ
2
α+1,β−2. As a result, kδ2(ω) = 0.

Furthermore, we read additive invariants on each column of the page k
IÊ

2: the
columns α < −k are rows of the page Ẽ2(XG) of the reindexed weight spectral sequence
of XG and the split short exact sequences (4.1) also induce long exact sequences of
homology of the pairs

(
(NpC∗)G, (NpC∗)G

)
.

When all the vector spaces Hβ((N−kC∗)G/(N−k−1C∗)G) are finite-dimensional, we
can consider the Euler characteristic of the page k

IÊ
2 and this defines an additive invariant

on the category of real algebraic G-varieties on which it is well-defined. When the involved
quantities are well-defined, we have the following formula:

Proposition 4.7. For G = Z/2Z, for all k ∈ Z and all real algebraic G-varieties
X for which the following quantities are well-defined, we have

BG
k (X) = (−1)kχ

(
H∗

(
(N−kC∗)G

(N−k−1C∗)G

))
+

∑

q≥k+1

βq(XG).

Proof. When all the spaces Hβ((N−kC∗)G/(N−k−1C∗)G) are finite-dimensional,
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we have

χ
(
k
IÊ

2
)

= (−1)kχ

(
H∗

(
(N−kC∗)G

(N−k−1C∗)G

))
+

∑

α≤−k−1

(−1)αχ
(
Ẽ2

α+∗,−α(XG)
)

and, for all α ∈ Z, χ
(
Ẽ2

α+∗,−α(XG)
)

= (−1)αβ−α(XG) by [14, Section 1.3]. We conclude
by recalling that the Euler characteristics of two spectral sequences converging to the
same homology are equal from the level where they are well-defined (see for example
[11]). ¤

We list below cases where the quantity χ(k
IÊ

2) is well-defined and coincides with the
kth equivariant virtual Betti number of X ([6]).

Theorem 4.8. Let G = Z/2Z and X be a real algebraic G-variety. We have

χ(k
IÊ

2) = βG
k (X)

if

• k < 0 and X is any real algebraic G-variety,
• X is a compact real algebraic G-variety equipped with a fixed-point free action, for

all k ∈ Z,
• dimX = d and k = d (X is any real algebraic G-variety),
• X is a 1-dimensional real algebraic G-variety, for all k ∈ Z.

Proof. 1. If k < 0, we have χ(k
IÊ

2) =
∑

q≥k+1 βq(XG) =
∑

q≥0 βq(XG). If now
we assume X to be compact nonsingular, then the fixed points set XG is also compact
nonsingular and χ(k

IÊ
2) =

∑
q≥0 dimZ2 Hq(XG) = dimZ2 Hk(X;G), since k < 0, by

Lemma 3.14.
2. To show the second point, suppose X is a compact real algebraic G-variety equipped

with a fixed-point free action and let k ∈ Z. Then XR/G is an arc-symmetric set
and, by Proposition 2.7, there is an isomorphism of complexes (N−kC∗(X))G ∼=
N−kC∗(XR/G). Then all homology groups Hβ((N−kC∗)G/(N−k−1C∗)G) =
Hβ(N−kC∗(XR/G)/N−k−1C∗(XR/G)) = Ẽ2

−k+β,k(XR/G) are finite-dimensional and,
since XG = ∅, we have

χ(k
IÊ

2) = (−1)k
∑

β

(−1)β dimZ2 Ẽ2
−k+β,k(XR/G) = βk(XR/G).

The formula βk(XR/G) = βG
k (X) of [6, Proposition 3.15] provides the result.

3. If d is the dimension of X, we have

Hn

(
(N−dC∗(X))G

(N−d−1C∗(X))G

)
=

{
(N−dCd(X))G if n = d,

0 otherwise.
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Then χ(−d
I Ê

2) = dimZ2(N−dCd(X))G = dimZ2(Ẽ
2
0,d(X))G (recall that NαCβ(X) = 0

for α < −d) and, if X is compact nonsingular, (N−dCd(X))G = (ker ∂d)G =
Hd((C∗(X))G) = Hd(X;G) (see Lemma 3.14).

4. Finally assume X to be a 1-dimensional real algebraic G-variety. Then

Hn

(
(C∗(X))G

(N−1C1(X))G

)
=





(ker ∂1)G

(N−1C∗(X))G
if n = 1,

H0((C∗(X))G) if n = 0,

0 otherwise,

and χ(0IÊ
2) is well-defined (H0((C∗(X))G) is a subspace of H0(X;G) by Lemma 3.14).

Furthermore, if X is compact nonsingular, we have (N−1C1(X))G = (ker ∂1)G and
χ(0IÊ

2) = dimZ2 H0((C∗(X))G) + dimZ2 H1(XG) = dimZ2 H0(X;G). ¤

Below, we use the extension criterion Theorem 2.4 to show the existence of a filtered
complex and a spectral sequence from which we can recover the equivariant virtual Betti
numbers. This will allow us to establish sufficient conditions for the Euler characteristics
χ(k

IÊ
2) to be well-defined and to coincide with the equivariant virtual Betti numbers in

general case.

Proposition 4.9. The functor VG(R) −→ Ho C which associates to every projec-
tive nonsingular G-variety the filtered complex (F canC∗(X))G = F can(C∗(X))G admits
an extension to a functor

GWC∗ : SchG
c (R) −→ Ho C

which verifies acyclicity and additivity properties. Furthermore, GWC∗ is unique up to
a unique isomorphism of Ho C with these extension, acyclicity and additivity properties.

Proof. We use the extension Theorem 2.4. Since the functor VG(R) −→
Ho C ; X 7→ (F canC∗(X))G factorizes through C, it is Φ-rectified and, if X and Y are two
real algebraic G-varieties, we have (F canC∗(X tY ))G = (F canC∗(X))G⊕ (F canC∗(Y ))G

therefore it also verifies the condition (F1) of Theorem 2.4.
The verification of condition (F2) runs as in [14, Proof of Theorem 1.1], replacing

the homology of the chains by the homology of the invariant chains. Indeed, the short
sequences for an equivariant blowing-up

0 → Hk((C∗(Ỹ ))G) → Hk((C∗(Y ))G)⊕Hk((C∗(X̃))G) → Hk((C∗(X))G) → 0

are exact (by Lemma 3.14, for every G-variety Z, Hk((C∗(Z))G) = Hk(Z;G)/⊕
i≥k+1 Hi(ZG) and the short sequences for H∗( · ) and H( · ;G) are exact: see [13,

Proof of Proposition 2.1] and [6, Lemma 3.6]). ¤

If X is a real algebraic G-variety, we have H∗(GWC∗(X)) = H∗((C∗(X))G) (because
the short exact sequences of semialgebraic chains for an equivariant closed inclusion and
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an acyclic square in SchG
c (R) are split by equivariant morphisms) and we can read the

acyclicity and additivity properties of GWC∗ on the induced spectral sequence, denoted
by GE. We recover the equivariant virtual Betti numbers from the spectral sequence GE

together with the virtual Betti numbers of the fixed points set:

Theorem 4.10. For every real algebraic G-variety X, if we reindex the spectral
sequence GE as in Section 3.3, we have

βG
q (X) =

∑

p≥0

(−1)p dim GẼ2
p,q(X) +

∑

i≥q+1

βi(XG)

for all q ∈ Z.

Proof. First, if X is a G-variety of dimension d, the terms GẼ2
p,q(X) are finite-

dimensional and bounded in a triangle with vertices (0, 0), (0, d) and (d, 0). This comes
from the isomorphism between the spectral sequence GẼ(X) of a compact G-variety
X and the spectral sequence associated to an equivariant cubical hyperresolution of X,
which is analog to the one considered in the Section 1.3 of [14] (see Proposition 1.8 and
Corollary 1.10 of [14]), replacing the semialgebraic chains by the invariant semialgebraic
chains.

Now fix q ∈ Z. The additivity of the right-hand side expression above is deduced
from the additivity property of GWC∗, as in [14, Section 1.3], and the additivity of
virtual Betti numbers. If now we consider a compact nonsingular G-variety X, the filtered
complex GWC∗(X) is quasi-isomorphic in C to (F canC∗(X))G (the inclusion of categories
VG(R) → RegG

comp(R) has the extension property and the functor X 7→ (F canC∗(X))G

is additive and acyclic in RegG
comp(R)) and

∑

p≥0

(−1)p dim GẼ2
p,q(X) +

∑

i≥q+1

βi(XG)

= dimZ2 Hq((C∗(X))G) +
∑

i≥q+1

dimZ2 Hi(XG)

= dimZ2 Hq(X;G)

by Lemma 3.14. ¤

Consequently, if the Nash-constructible filtration realized the functor GWC∗, we
would have, for all real algebraic G-varieties and all k ∈ Z,

χ(k
I Ê2) = (−1)kχ

(
H∗

(
(N−kC∗)G

(N−k−1C∗)G

))
+

∑

i≥k+1

βi(XG)

=
∑

p≥0

(−1)p dim GẼ2
p,k(X) +

∑

i≥k+1

βi(XG)

= βG
k (X).
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We already know that the functor SchG
c (R) −→ Ho C ; X 7→ (NC∗(X))G verifies

acyclicity and additivity properties at the chain level thanks to the equivariant splittings
of the short exact sequences of additivity (4.1) and of the analog short exact sequences
of acyclicity (this is true for any finite group G). It remains to decide whether the
equivariant filtered quasi-isomorphism NC∗(X) → F canC∗(X) for X a compact and
nonsingular real algebraic G-variety (see [14]) is preserved by the functor ΓG or not.
The clear identification of the behaviour of invariant chains under this morphism should
require precise techniques of equivariant Nash geometry.

If the double complex kĈ does not realize the equivariant virtual Betti numbers,
this means we identified new additive invariants on real algebraic G-varieties in terms
of finite long exact sequences. The spectral sequences induced by the double complexes
kĈ, which are natural invariants of the equivariant geometry of real algebraic G-varieties,
should be paired with the equivariant weight spectral sequence to which they are related.
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