Journal of the Mathematical Society of Japan

Coefficient multipliers of $H^1$ into $\ell^q$ associated with Laguerre expansions

Yehao SHI and Zhongkai LI

Full-text: Open access

Abstract

The purpose of the paper is to study coefficient multipliers of the Hardy space $H^1([0,\infty))$ associated with Laguerre expansions. As a consequence, a Paley type inequality is obtained.

Article information

Source
J. Math. Soc. Japan, Volume 68, Number 2 (2016), 797-805.

Dates
First available in Project Euclid: 15 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1460727381

Digital Object Identifier
doi:10.2969/jmsj/06820797

Mathematical Reviews number (MathSciNet)
MR3488146

Zentralblatt MATH identifier
1346.42023

Subjects
Primary: 42B30: $H^p$-spaces
Secondary: 42C10: Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 42A45: Multipliers

Keywords
Hardy space multipliers Laguerre expansion Paley inequality

Citation

SHI, Yehao; LI, Zhongkai. Coefficient multipliers of $H^1$ into $\ell^q$ associated with Laguerre expansions. J. Math. Soc. Japan 68 (2016), no. 2, 797--805. doi:10.2969/jmsj/06820797. https://projecteuclid.org/euclid.jmsj/1460727381


Export citation

References

  • R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math., 87 (1965), 695–708.
  • R. Balasubramanian and R. Radha, Hardy-type inequalities for Hermite expansions, J. Inequal. in Pure and Appl. Math., 6 (2005), 1–4.
  • L. Colzani and G. Travaglini, Hardy–Lorentz spaces and expansions in eigenfunctions of the Laplace–Beltrami operator on compact manifolds, Colloq. Math., 58 (1990), 305–316.
  • P. L. Duren and A. L. Shields, Coefficient multipliers of $H^p$ and $B^p$ spaces, Pacific J. Math., 32 (1970), 69–78.
  • Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions, Bull. London Math. Soc., 29 (1997), 331–337.
  • Y. Kanjin and K. Sato, Paley's inequality for the Jacobi expansions, Bull. London Math. Soc., 33 (2001), 483–491.
  • Y. Kanjin and K. Sato, Hardy's inequality for Jacobi expansions, Math. Inequal. Appl., 7 (2004), 551–555.
  • Zh.-K. Li and Y.-H. Shi, Multipliers of Hardy spaces associated with generalized Hermite expansions, Constr. Approx., 39 (2014), 517–540.
  • Zh.-K. Li, Y.-H. Shi and X.-L. Zhang, Coefficient multipliers on Hardy spaces for Jacobi expansions of exponential type, to appear in J. Approx. Theory.
  • B. Muckenhoupt, Asymptotic forms for Laguerre polynomials, Proc. Amer. Math. Soc., 24 (1970), 288–292.
  • B. Muckenhoupt and D. W. Webb, Two-weight norm inequalities for Cesàro means of Laguerre expansions, Trans. Amer. Math. Soc., 353 (2000), 1119–1149.
  • B. Osikiewicz, Multipliers of Hardy spaces, Quaestiones Math., 27 (2004), 57–73.
  • R. Radha and S. Thangavelu, Hardy's inequalities for Hermite and Laguerre expansions, Proc. Amer. Math. Soc., 132 (2004), 3525–3536.
  • M. Satake, Hardy's inequalities for Laguerre expansions, J. Math. Soc. Japan, 52 (2000), 17–24.
  • E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
  • G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., 23, Providence, RI, 1975.
  • Y.-H. Shi and Zh.-K. Li, Multipliers of Hardy spaces associated with Laguerre expansions, J. Math. Soc. Japan, 68 (2016), 91–99.
  • S. Thangavelu, On regularity of twisted spherical means and special Hermite expansion, Proc. Indian Acad. Sci. Math. Sci., 103 (1993), 303–320.