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Abstract. The purpose of the paper is to study coefficient multipliers
of the Hardy space H1([0,∞)) associated with Laguerre expansions. As a
consequence, a Paley type inequality is obtained.

1. Introduction and results.

If α > −1, the Laguerre function L(α)
n (x) is defined by

L(α)
n (x) = τα

n L(α)
n (x)e−x/2xα/2, (1)

where τα
n = (Γ(n+1)/Γ(n+α+1))1/2 and L

(α)
n (x) (n ≥ 0) are the Laguerre polynomials

determined by the orthogonal relation (see [16, (5.1.1)])

∫ ∞

0

e−xxαL(α)
n (x)L(α)

m (x)dx = (τα
n )−2δmn.

The system {L(α)
n (x)}∞n=0 is a complete orthonormal system on the interval [0,+∞) with

respect to the Lebesgue measure. For a function f ∈ Lp([0,∞)), 1 ≤ p ≤ ∞, its Laguerre
expansion is

f ∼
∞∑

n=0

c(α)
n (f)L(α)

n (x), c(α)
n (f) =

∫ ∞

0

f(t)L(α)
n (t)dt. (2)

H1(R) is the real Hardy space of the boundary values f(x) = <F (x) of the real
parts <F (z) of functions F (z), where F (z) is an element of the Hardy space H1(R2

+),
that is, F (z) is analytic on the upper half plane R2

+ = {z = x+ iy; y > 0} with the norm

‖f‖H1(R) = ‖F‖H1(R2
+) = sup

y>0

∫ ∞

−∞
|F (x + iy)|dx.

In the present paper, we shall study the coefficient multipliers associated with Laguerre
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expansions on the space

H1([0,∞)) = {f ∈ H1(R) : suppf ⊂ [0,∞)}.

Our main theorem is as follows:

Theorem 1.1. Let α ≥ 0 and 2 ≤ q < ∞. If a sequence {λn}∞n=0 satisfies the
condition

2n∑

k=n

|λk|q = O(1), as n →∞, (3)

then for all f ∈ H1([0,+∞)), the coefficients c
(α)
n (f) of its Laguerre expansion (2) satisfy

∞∑
n=0

|λnc(α)
n (f)|q ≤ c‖f‖q

H1([0,∞)), (4)

where c is a constant independent of f .

An interesting application of Theorem 1.1 is the Paley type inequality for Laguerre
expansions, which is stated in the following corollary.

Corollary 1.2. Let α ≥ 0. If {nk} is a Hadamard sequence satisfying nk+1/nk ≥
ρ > 1 (k = 1, 2, . . . ), then for all f ∈ H1([0,∞)), the coefficients c

(α)
n (f) of its Laguerre

expansion (2) satisfy

∞∑

k=1

|c(α)
nk

(f)|2 ≤ c‖f‖2H1([0,∞)), (5)

where c is a constant independent of f .

A function F analytic in the unit disk D is said to be in the Hardy space
Hp(D), 0 < p < ∞, if ‖F‖Hp := sup0≤r<1 Mp(F ; r) < ∞, where Mp(F ; r) ={
(1/2π)

∫ π

−π
|F (reiθ)|pdθ

}1/p. Denote by `q the sequence space `q =
{{ak} : ‖{ak}‖q =

( ∑∞
k=0 |ak|q

)1/q
< ∞}

for 0 < q < ∞, and `∞ the set of bounded sequences. A sequence
{λn} is said to be a multiplier of Hp(D) into the sequence spaces `q provided {λncn} ∈ `q

whenever
∑∞

n=0 cnzn ∈ Hp(D). Similarly, a sequence {λn}∞n=0 is a multiplier of
H1([0,∞)) into `q associated with Laguerre expansions if (4) holds.

Coefficient multipliers of the Hardy spaces Hp(D) into `q are characterized in Duren
and Shields [4]. According to [4, pp. 72–73], the sequence {λn} is a multiplier of H1(D)
into `q for 2 ≤ q < ∞ if and only if

∑2N
n=N |λn|q = O(1). It is very remarkable that

the sufficient condition for coefficient multipliers of H1 into `q(2 ≤ q < ∞) associated
with Laguerre expansions coincides with that of Taylor expansions. For a survey on
multipliers from Hp(D) to `q for various p and q, we may refer to [12]. The original
proofs of classical theorems on coefficient multipliers depend strongly on the complex-
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variable structures of analytic functions, but this does not suit for other eigenfunction
expansions. Recently, by means of real-variable methods in harmonic analysis (see the
book [15]), [8], [9], [17] proved a series of theorems on coefficient multipliers of the Hardy
spaces Hp associated with three orthogonal systems of functions, such as exponential
Jacobi functions, generalized Hermite functions, and Laguerre functions. In particular,
some Paley-type inequalities and Hardy-type inequalities in each case were described. In
our previous paper [17], we studied coefficient multipliers of the Hardy spaces Hp([0,∞))
(0 < p < 1) associated with Laguerre expansions, which is based on the duality relation
of the Hardy space Hp(R) and the Lipschitz space Λp−1−1(R). Analogs of the Hardy
inequality and Paley inequality in the context of eigenfunction expansions were studied
by several authors (cf. [2], [3], [5], [6], [7], [13], [14], [18]).

Throughout the paper, A = O(B) or A . B means that A ≤ cB for some positive
constant c independent of variables, functions, n, k, etc., but possibly dependent of
some fixed parameters and fixed m. N0 = {0, 1, 2, . . . } denotes the set of all nonnegative
integers. If na or ka appears in some estimates, then it will be understood as the constant
1 for n = 0 or k = 0, regardless of whether a is positive or negative.

2. Prelimineries.

In order to apply the duality of H1(R) and BMO(R), we must extend L(α)
n (x) from

the half line R+ to the whole line R in the same way as [17]. If α/2 > 0 is not an integer,
then we define

L̃(α)
n (x) =

{
L(α)

n (x), for x > 0;

0, for x ≤ 0.
(6)

If α/2 ≥ 0 is an integer, we shall use the function

ψ(x) =





1, for x ≥ 0;

(1− e1/x) exp
(
− e1/x

x + 1

)
, for − 1 < x < 0;

0, for x ≤ −1.

It is clear that ψ(x) ∈ C(R). Furthermore, for k ≥ 1, the k-th derivative ψ(k)(x) of ψ(x)
satisfies lim

x→−1+0
ψ(k)(x) = lim

x→0−0
ψ(k)(x) = 0 by routine evaluations, which implies that

ψ(x) ∈ C∞(R) and |ψ(k)(x)| ≤ c, where c is a constant independent of x.
We define, for even integer α ≥ 0,

L̃(α)
n (x) = ψ(nx)L(α)

n (x). (7)

We see that the coefficients c
(α)
n (f) are independent of the choice of an extension

L̃(α)
n (x).

The estimations of the higher order derivatives for Laguerre functions in [14, Lemma
1 and Lemma 2] are valid for L̃(α)

n (x) instead of L(α)
n (x) on the whole line R.
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Lemma 2.1 ([17, Corollary 2.4]). Let α ≥ 0 and M = [α/2] . Then for x ∈ R,

( i ) if α/2 is not an integer,

∣∣(L̃(α)
n )(m)(x)

∣∣ . nm, m ≤ M ; (8)

( ii ) if α/2 is not an integer,

∣∣(L̃(α)
n )(M)(x + h)− (L̃(α)

n )(M)(x)
∣∣ . nα/2|h|δ, α/2 = M + δ, 0 < δ < 1; (9)

(iii) if α/2 is an integer, (8) is true for all m ∈ N0.

For given α > −1 and τ > 0, a precise estimate of the Laguerre polynomials is given
by (see [1], [10], [11])

∣∣L(α)
n (x)

∣∣ . ex/2nα/2(ν−1 + x)−α/2−1/4(ν1/3 + |x− ν|)−1/4Φ(α)
n (x), (10)

where ν = 4n + 2α + 2, and

Φ(α)
n (x) =





1, for 0 ≤ x ≤ ν;

exp
(−η|x− ν|3/2

ν1/2

)
, for ν ≤ x ≤ (1 + τ)ν;

e−ξx, for (1 + τ)ν ≤ x

for some given positive constants η = η(α, τ) and ξ = ξ(α, τ). The unified and simplified
form as (10) is stated in [8], which prefer to use 4n instead of ν for convenience in
subsequent applications.

Lemma 2.2 ([8, Lemma 2.1]). For given α > −1 and τ > 0, there exist positive
constants η and ξ such that

∣∣L(α)
n (x)

∣∣ . ex/2nα/2x−α/2M (α)
n (x) (11)

holds for all x > 0 and n ≥ 0, where

M (α)
n (x) = xα/2(n−1 + x)−α/2−1/4

(
n1/3 + |x− 4n|)−1/4Φn(x), (12)

and

Φn(x) =





1, for 0 ≤ x ≤ 4n;

exp
(−η|x− 4n|3/2

n1/2

)
, for 4n ≤ x ≤ (1 + τ)4n;

e−ξx, for (1 + τ)4n ≤ x.
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A direct consequence of (12) is

∣∣x1/4M (α)
n (x)

∣∣ . n−1/12,

and |x1/4M
(α)
n (x)| attains this bound near the point x = 4n. But in the most part of x

it has a much smaller bound as a multiple of n−1/4.
To establish the main result of the paper, the next lemma is fundamental.

Lemma 2.3. Let α ≥ 0. For any interval I ⊂ R and for all j ≤ k, j, k ∈ N0, one
has

∣∣∣∣
∫

I

L̃(α)
k (x)L̃(α)

j (x)dx

∣∣∣∣ .
(

j

k

)1/4

|I|+ 1
k1/4j3/4

. (13)

Proof. If k/2 ≤ j ≤ k, then by Lemma 2.1,
∣∣ ∫

I
L̃(α)

k (x)L̃(α)
j (x)dx

∣∣ . |I| for all
α ≥ 0. In what follows, we assume that j ≤ k/2.

If α/2 > 0 is not an integer, for any interval I ⊆ R, by (6) we have

∫

I

L̃(α)
k (x)L̃(α)

j (x)dx =
∫

I∩[0,∞)

L̃(α)
k (x)L̃(α)

j (x)dx.

If α/2 ∈ N0, for any interval I ⊆ R, since L̃(α)
k (x) = 0 for x ≤ −k−1 by (7), therefore

∫

I

L̃(α)
k (x)L̃(α)

j (x)dx =
∫

I∩[−k−1,0)

L̃(α)
k (x)L̃(α)

j (x)dx +
∫

I∩[0,∞)

L̃(α)
k (x)L̃(α)

j (x)dx.

By Lemma 2.1, the first term on the right hand side above is dominated by ck−1. Since
j ≤ k/2, it is easy to see k−1 . j−3/4k−1/4, which yields the required estimate. It
remains to estimate

∫
I∩[0,∞)

L̃(α)
k (x)L̃(α)

j (x)dx for all α ≥ 0. In proving (13), we may
assume I ⊆ [0,∞). Otherwise we can divide I by 0 into two parts if it contains 0 as
an interior point. By (6) and (7), L̃(α)

n (x) = L(α)
n (x) for all x > 0. In view of (1) and

Lemma 2.2, since τα
n = O(n−α/2), it follows that |L(α)

n (x)| . M
(α)
n (x) with x > 0. We

have
∣∣∣∣
∫

I

L̃(α)
k (x)L̃(α)

j (x)dx

∣∣∣∣ .
∣∣∣∣
∫

I

M
(α)
k (x)M (α)

j (x)dx

∣∣∣∣. (14)

Dividing the last integral above into five parts, we write

∫

I

M
(α)
k (x)M (α)

j (x)dx =
5∑

j=1

∫

Ij

M
(α)
k (x)M (α)

j (x)dx :=
5∑

j=1

Qj , (15)

where



802 Y. Shi and Z. Li

I1 = I
⋂
{x : x ≤ k−1}; I2 = I

⋂
{x : k−1 ≤ x ≤ j−1};

I3 = I
⋂
{x : j−1 ≤ x ≤ 2j}; I4 = I

⋂
{x : 2j ≤ x ≤ 2k};

I5 = I
⋂
{x : x ≥ 2k}.

Using Lemma 2.2, we deal with each Qj as follows:

|Q1| .
∫

I1

x1/4M
(α)
k (x)x1/4M

(α)
j (x)x−1/2dx . k−1/4j−1/4

∫

I1

x−1/2dx . k−3/4j−1/4;

|Q2| . k−1/4

∫

I2

x−1/4dx . j−3/4k−1/4;

|Q3| . k−1/4j−1/4

∫

I3

x−1/2dx . k−1/4j1/4|I|;

|Q4| . k−1/4j−1/12

∫

I4

x−1/2dx . k−1/4j−7/12|I|;

|Q5| . k−1/12j−1/12

∫

I5

x−1/2dx . k−7/12j−1/12|I|.

Substituting these estimates into (15) proves that
∣∣ ∫

I
M

(α)
k (x)M (α)

j (x)dx
∣∣ .

j−3/4k−1/4 +k−1/4j1/4|I| with j ≤ k/2. Furthermore, inserting this into (14), we get the
desired inequality (13). ¤

3. Proof of Theorem 1.1.

Now we prove Theorem 1.1. Our approach is based on the duality of H1(R) and
BMO(R).

Proof. We first note that the conclusion for 2 < q < ∞ follows from that for
q = 2. Indeed, let νn = |λn|q/2, then (3) implies

2n∑

k=n

|νk|2 =
2n∑

k=n

|λk|q = O(1),

and, since |c(α)
n (f)| . ‖f‖H1([0,∞)) by Lemma 2.1 with m = 0, we obtain

∞∑
n=0

∣∣λnc(α)
n (f)

∣∣q . ‖f‖q−2
H1([0,∞))

∞∑
n=0

∣∣νnc(α)
n (f)

∣∣2 . ‖f‖q
H1([0,∞)).

Now we turn to the proof of the theorem for q = 2. We fix a sequence {bn}∞n=0 ∈ `2 and
for n = 0, 1, 2, . . . , put
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gn(x) =
n∑

k=0

λkbkL̃(α)
k (x). (16)

By the duality between H1 and BMO, we have
∣∣ ∫∞
−∞ f(x)gn(x)dx

∣∣ .
‖gn‖BMO‖f‖H1([0,∞)), that is,

∣∣∣∣
n∑

k=0

λkbkc
(α)
k (f)

∣∣∣∣ . ‖gn‖BMO‖f‖H1([0,∞)), (17)

where ‖g‖BMO = supI(1/|I|) ∫
I
|g(t)− gI |dt with supremum taken over all intervals I of

the real line R, and gI = (1/|I|) ∫
I
g(t)dt with |I| being the length of I. We shall show

that gn(x) is a BMO function and

‖gn‖BMO .
( n∑

k=0

|bk|2
)1/2

(18)

for all {bk}∞k=0 ∈ `2. Once (18) is established, then from (17) we deduce that( ∑n
k=0 |λkc

(α)
k (f)|2)1/2 . ‖f‖H1([0,∞)), which proves the theorem by letting n →∞.

To prove (18), we have only to find a constant ηI , for any interval I, such that

1
|I|

∫

I

|gn(x)− ηI |dx .
( n∑

k=0

|bk|2
)1/2

. (19)

For an interval I, let m = [|I|−1], the integer part of the number |I|−1, and choose
xI to be one of the end points of I. If n ≤ m, then applying Lemma 2.1,

|gn(x)− gn(xI)|2 ≤
( n∑

k=0

|bk|2
)( n∑

k=0

|λk|2
∣∣L̃(α)

k (x)− L̃(α)
k (xI)

∣∣2
)

.
( n∑

k=0

|bk|2
)( n∑

k=0

|λk|2k2σ|x− xI |2σ

)
,

where σ = α/2 for 0 < α/2 < 1, and σ = 1 otherwise. By the condition (3) with q = 2,
summing by parts gives

∑n
k=0 |λk|2k2σ . n2σ, then

|gn(x)− gn(xI)|2 .
n∑

k=0

|bk|2(n|x− xI |)σ .
n∑

k=0

|bk|2.

Hence (19) holds with ηI = gn(xI).
If n > m, we again choose xI to be one of the end points of I to obtain

|gn(x)− gm(xI)| ≤ |gm(x)− gm(xI)|+
∣∣∣∣

∑

m<k≤n

λkbkL̃(α)
k (x)

∣∣∣∣.



804 Y. Shi and Z. Li

Hence by what has been verified,

1
|I|

∫

I

|gn(x)− gm(xI)|dx .
( m∑

k=0

|bk|2
)1/2

+ Fm,n. (20)

where Fm,n = |I|−1
∫

I

∣∣ ∑
m<k≤n λkbkL̃(α)

k (x)
∣∣dx. But for Fm,n, we have

F 2
m,n ≤

1
|I|

∫

I

∣∣∣∣
∑

m<k≤n

λkbkL̃(α)
k (x)

∣∣∣∣
2

dx

≤
∑

m<k≤n

∑

m<j≤n

|λkbkλjbj | 1
|I|

∣∣∣∣
∫

I

L̃(α)
k (x)L̃(α)

j (x)dx

∣∣∣∣.

By symmetry, it suffices to treat the part
∑

m<k≤n

∑
m<j≤k. For these j, k, |I|−1 ≤

m + 1 ≤ j, and by Lemma 2.3,

1
|I|

∣∣∣∣
∫

I

L̃(α)
k (x)L̃(α)

j (x)dx

∣∣∣∣ . j1/4

k1/4
+

|I|−1

k1/4j3/4
. j1/4

k1/4
.

Thus the evaluation of F 2
m,n is reduced to showing the following inequality

Sm,n :=
∑

m<k≤n

∑

m<j≤k

|λkbkλjbj | j
1/4

k1/4
.

∑

m<k≤n

|bk|2.

For the purpose we rewrite Sm,n as

Sm,n ≤ 1
2

∑

m<k≤n

∑

m<j≤k

(|λjbk|2 + |λkbj |2
) j1/4

k1/4

=
1
2

∑

m<k≤n

|bk|2
k1/4

∑

m<j≤k

|λj |2j1/4 +
1
2

∑

m<j≤n

|bj |2j1/4
∑

j≤k≤n

|λk|2
k1/4

. (21)

Under the condition (3) with q = 2, summing by parts again implies

∑

j≤k

|λj |2j1/4 . k1/4,
∑

k≥j

|λk|2
k1/4

. j−1/4,

incorporating these into (21) proves that Sm,n .
∑

m<k≤n |bk|2, moreover, Fm,n .( ∑
m<k≤n |bk|2

)1/2. Inserting this into (20) proves (19) with ηI = gm(xI).
The proof of Theorem 1.1 is completed. ¤
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