Journal of the Mathematical Society of Japan

The stable Calabi-Yau dimension of tame symmetric algebras

Karin ERDMANN and Andrzej SKOWROŃSKI

Full-text: Open access

Abstract

We determine the Calabi-Yau dimension of the stable module categories of all symmetric algebras of tame representation type over an algebraically closed field, and derive some consequences.

Article information

Source
J. Math. Soc. Japan, Volume 58, Number 1 (2006), 97-128.

Dates
First available in Project Euclid: 17 April 2006

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1145287095

Digital Object Identifier
doi:10.2969/jmsj/1145287095

Mathematical Reviews number (MathSciNet)
MR2204567

Zentralblatt MATH identifier
1167.16013

Subjects
Primary: 16D50: Injective modules, self-injective rings [See also 16L60] 16G60: Representation type (finite, tame, wild, etc.) 16G70: Auslander-Reiten sequences (almost split sequences) and Auslander- Reiten quivers 18G10: Resolutions; derived functors [See also 13D02, 16E05, 18E25]

Keywords
selfinjective algebra stable module category periodic module Calabi-Yau dimension Auslander-Reiten quiver

Citation

ERDMANN, Karin; SKOWROŃSKI, Andrzej. The stable Calabi-Yau dimension of tame symmetric algebras. J. Math. Soc. Japan 58 (2006), no. 1, 97--128. doi:10.2969/jmsj/1145287095. https://projecteuclid.org/euclid.jmsj/1145287095


Export citation

References

  • H. Asashiba, The derived equivalence classification of representation-finite selfinjective algebras, J. Algebra, 214 (1999), 182–221.
  • I. Assem, D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras I: Techniques of Representation Theory, London Math. Soc. Student Texts, 65, Cambridge Univ. Press, 2005, in press.
  • M. Auslander and I. Reiten, $D \Tr$-periodic modules and functors, In: Representation Theory of Algebras, CMS Conf. Proc., 18, Amer. Math. Soc., 1996, 39–50.
  • M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., 36, Cambridge Univ. Press, 1995.
  • J. Białkowski, K. Erdmann and A. Skowroński, Deformed preprojective algebras of generalized Dynkin type, Trans. Amer. Math. Soc., in press.
  • J. Białkowski, T. Holm and A. Skowroński, Derived equivalences for tame weakly symmetric algebras having only periodic modules, J. Algebra, 269 (2003), 652–668.
  • J. Białkowski, T. Holm and A. Skowroński, On nonstandard tame selfinjective algebras having only periodic modules, Colloq. Math., 97 (2003), 33–47.
  • J. Białkowski and A. Skowroński, Selfinjective algebras of tubular type, Colloq. Math., 94 (2002), 175–194.
  • J. Białkowski and A. Skowroński, On tame weakly symmetric algebras having only periodic modules, Arch. Math. (Basel), 81 (2003), 142–154.
  • J. Białkowski and A. Skowroński, Socle deformations of selfinjective algebras of tubular type, J. Math. Soc. Japan, 56 (2004), 687–716.
  • A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 1183–1205.
  • K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Mat., 65 (1982), 331–378.
  • S. Brenner, M. C. R. Butler and A. D. King, Periodic algebras which are almost Koszul, Algebr. Represent. Theory, 5 (2002), 331–367.
  • O. Bretscher, C. Läser and C. Riedtmann, Selfinjective and simply connected algebras, Manuscr. Math., 36 (1982), 253–307.
  • W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc., 56 (1988), 451–483.
  • P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel), 44 (1985), 522–529.
  • Yu. Drozd, Tame and wild matrix problems, In: Representation Theory II, Lecture Notes in Math., 832, Springer, 1980, 242–258.
  • K. Erdmann, On the number of simple modules of certain tame blocks and algebras, Arch. Math. (Basel), 51 (1988), 34–38.
  • K. Erdmann, Algebras of quaternion defect groups I, Math. Ann., 281 (1988), 545–560.
  • K. Erdmann, Algebras of quaternion defect groups II, Math. Ann., 281 (1988), 561–582.
  • K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math., 1428, Springer, 1990.
  • K. Erdmann and A. Skowroński, Classification of tame symmetric algebras with periodic modules, Preprint, Toruń 2005.
  • K. Erdmann and N. Snashall, On Hochschild cohomology of preprojective algebras I, J. Algebra, 205 (1998), 391–412.
  • P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, In: Representation Theory I, Lecture Notes in Math., 831, Springer, 1980, 1–71.
  • P. Gabriel, The universal cover of a representation-finite algebra, In: Representation of Algebras, Lecture Notes in Math., 903, Springer, 1981, 68–105.
  • P. Gabriel and C. Riedtmann, Group representations without groups, Comment. Math. Helv., 54 (1979), 240–287.
  • D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Series, 119, Cambridge Univ. Press, 1988.
  • D. Happel, Hochschild cohomology of finite-dimensional algebras, In: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, Lecture Notes in Math., 1404, Springer, 1989, 108–126.
  • D. Happel, Auslander-Reiten triangles in derived categories of finite-dimensional algebras, Proc. Amer. Math. Soc., 112 (1991), 641–648.
  • D. Happel and C. M. Ringel, The derived category of a tubular algebra, In: Representation Theory I. Finite Dimensional Algebras, Lecture Notes in Math., 1177, Springer, 1986, 156–180.
  • R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer, 1977.
  • T. Holm, Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type, J. Algebra, 211 (1999), 159–205.
  • D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc., 46 (1983), 347–364.
  • D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math., 42 (1983), 221–243.
  • B. Keller, On triangulated orbit categories, Preprint, Paris, 2005.
  • M. Kontsevich, Triangulated categories and geometry, Course at the École Normale Supérieure, Paris, Notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, 1998.
  • H. Lenzing and A. Skowroński, Roots of Nakayama and Auslander-Reiten translations, Colloq. Math., 86 (2000), 209–230.
  • J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math., 132 (1989), 117–134.
  • Z. Pogorzały and A. Skowroński, Symmetric algebras stably equivalent to the trivial extensions of tubular algebras, J. Algebra, 1981 (1996), 95–111.
  • I. Reiten and M. van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15 (2002), 295–366.
  • J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra, 61 (1989), 303–317.
  • C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv., 55 (1980), 199–224.
  • C. Riedtmann, Representation-finite selfinjective algebras of class $\bm{A}_n$, In: Representation Theory II, Lecture Notes in Math., 832, Springer, 1980, 449–520.
  • C. Riedtmann, Representation-finite selfinjective algebras of class $\bm{D}_n$, Compositio Math., 49 (1983), 231–282.
  • C. M. Ringel, Tame algebras, In: Representation Theory I, Lecture Notes in Math., 831, Springer, 1980, 137–287.
  • C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer, 1984.
  • A. Skowroński, Group algebras of polynomial growth, Manuscripta Math., 59 (1987), 499–516.
  • A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann., 285 (1989), 177–199.
  • H. Tachikawa, Representations of trivial extensions of hereditary algebras, In: Representation Theory II, Lecture Notes in Math., 832, Springer, 1980, 579–599.
  • H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra, 109 (1987), 138–165.
  • T. Wakamatsu, Stable equivalence between universal covers of trivial extensions of self-injective algebras, Tsukuba J. Math., 9 (1985), 299–316.
  • J. Waschbüsch, Symmetrische Algebren vom endlichen Modultyp, J. Reine Angew Math., 321 (1981), 78–98.
  • J. Waschbüsch, On selfinjective algebras of finite representation type, Monographs of Institute of Mathematics, 14, UNAM, Mexico, 1983.
  • K. Yamagata, Frobenius algebras, In: Handbook of Algebra, 1, Elsevier Science B.V., 1996, 841–887.