Journal of Integral Equations and Applications

On the duality of the potential method and the point source method in inverse scattering probelms

J. Liu and R. Potthast

Full-text: Open access

Article information

Source
J. Integral Equations Applications, Volume 21, Number 2 (2009), 297-315.

Dates
First available in Project Euclid: 18 May 2009

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1242652036

Digital Object Identifier
doi:10.1216/JIE-2009-21-2-297

Mathematical Reviews number (MathSciNet)
MR2501167

Zentralblatt MATH identifier
1170.65088

Keywords
Inverse scattering potential theory point source method duality regularization numerics

Citation

Liu, J.; Potthast, R. On the duality of the potential method and the point source method in inverse scattering probelms. J. Integral Equations Applications 21 (2009), no. 2, 297--315. doi:10.1216/JIE-2009-21-2-297. https://projecteuclid.org/euclid.jiea/1242652036


Export citation

References

  • J. Cheng, J. J. Liu and G. Nakamura, Recovery of boundaries and types for multiple obstacles from the far-field pattern, to appear in Quart. Applied Maths.
  • --------, The numerical realization of the probe method for the inverse scattering problems from the near field data, Inverse Problems, Vol. 21, No.3, (2005), 839--855.
  • D. L. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, Vol. 12, (1996), 383-393.
  • D. L. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edition, Springer-Verlag, Berlin, (1998).
  • K. Erhard, Point Source Approximation Methods in Inverse Obstacle Reconstruction Problems, Dissertation Thesis, Göttingen (2005).
  • A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer Verlag (1996).
  • R. Kress, Linear Integral Equations, Springer Verlag, (1989).
  • J. J. Liu, G. Nakamura and R. Potthast, A new approach and improved error analysis for reconstructing the scattered wave by the point source method, J. Comput. Maths, Vol. 25, No.2, (2007), 113-130.
  • R. Potthast, Point sources and multipoles in inverse scattering theory, Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, Vol. 427, (2001).
  • --------, Stability estimates and reconstructions in inverse acoustic scattering using point sources, J. Appl. Comput. Maths, Vol. 114, No.2, (2000), 247--274.
  • --------, Topical Review: A survey on sampling and probe methods for inverse problems, Inverse Problems, Vol. 22, R1-R47, (2006).
  • --------, A point-source method for inverse acoustic and electromagnetic obstacle scattering problems, IMA J. Appl. Maths., Vol. 61, (1998), 119-140.
  • --------, Sampling and Probe Methods - An Algorithmical View, Computing, Vol. 75, (2005), 215-236.