Journal of Applied Mathematics

Image Reconstruction Based on Homotopy Perturbation Inversion Method for Electrical Impedance Tomography

Jing Wang and Bo Han

Full-text: Open access

Abstract

The image reconstruction for electrical impedance tomography (EIT) mathematically is a typed nonlinear ill-posed inverse problem. In this paper, a novel iteration regularization scheme based on the homotopy perturbation technique, namely, homotopy perturbation inversion method, is applied to investigate the EIT image reconstruction problem. To verify the feasibility and effectiveness, simulations of image reconstruction have been performed in terms of considering different locations, sizes, and numbers of the inclusions, as well as robustness to data noise. Numerical results indicate that this method can overcome the numerical instability and is robust to data noise in the EIT image reconstruction. Moreover, compared with the classical Landweber iteration method, our approach improves the convergence rate. The results are promising.

Article information

Source
J. Appl. Math., Volume 2013 (2013), Article ID 454706, 11 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394808297

Digital Object Identifier
doi:10.1155/2013/454706

Zentralblatt MATH identifier
06950686

Citation

Wang, Jing; Han, Bo. Image Reconstruction Based on Homotopy Perturbation Inversion Method for Electrical Impedance Tomography. J. Appl. Math. 2013 (2013), Article ID 454706, 11 pages. doi:10.1155/2013/454706. https://projecteuclid.org/euclid.jam/1394808297


Export citation

References

  • M. Cheney, D. Isaacson, and J. C. Newell, “Electrical impedance tomography,” SIAM Review, vol. 41, no. 1, pp. 85–101, 1999.
  • L. Borcea, “Electrical impedance tomography,” Inverse Problems, vol. 18, no. 6, pp. R99–R136, 2002.
  • W. Lionheart, N. Polydorides, and A. Borsic, “The reconstruction problem in electrical impedance tomography,” in Methods, History and Applications, chapter 1, IOP, Philadelphia, Pa, USA, 2005.
  • T. Yorkey, J. Webster, and W. Tompkins, “Comparing reconstruction algorithms for electrical impedance tomography,” IEEE Transactions on Biomedical Engineering, vol. 34, no. 11, pp. 843–852, 1987.
  • W. L. Weng and F. J. Dickin, “Improved modified Newton-Raphson algorithm for electrical impedance tomography,” Electronics Letters, vol. 32, no. 3, pp. 206–207, 1996.
  • M. Wang, “Inverse solutions for electrical impedance tomography based on conjugate gradients methods,” Measurement Science and Technology, vol. 13, no. 1, pp. 101–117, 2002.
  • M. Vauhkonen, D. Vadasz, P. Karjalainen, E. Somersalo, and J. Kaipio, “Tikhonov regularization and prior information in electrical impedance tomography,” IEEE Transactions on Medical Imaging, vol. 17, no. 2, pp. 285–293, 2002.
  • E. Chung, T. Chan, and X. Tai, “Electrical impedance tomography using level set representation and total variational regularization,” Journal of Computational Physics, vol. 205, no. 1, pp. 357–372, 2005.
  • A. Borsic, B. Graham, A. Adler, and W. Lionheart, “In vivo impedance imaging with total variation regularization,” IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 44–54, 2010.
  • B. T. Jin, T. Khan, and P. Maass, “A reconstruction algorithm for electrical impedance tomography based on sparsity regularization,” International Journal for Numerical Methods in Engineering, vol. 89, no. 3, pp. 337–353, 2011.
  • W. Q. Yang, D. M. Spink, T. A. York, and H. Mccann, “An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography,” Measurement Science and Technology, vol. 10, no. 11, pp. 1065–1069, 1999.
  • Y. Li and W. Q. Yang, “Image reconstruction by nonlinear Landweber iteration for complicated distributions,” Measurement Science and Technology, vol. 19, no. 9, Article ID 094014, 2008.
  • Z. H. Guo, F. Shao, and D. C. Lv, “Sensitivity matrix construction for electrical capacitance tomography based on the difference model,” Flow Measurement and Instrumentation, vol. 20, no. 3, pp. 95–102, 2009.
  • Z. Liu, G. Y. Yang, N. He, and X. Y. Tan, “Landweber iterative algorithm based on regularization in electromagnetic tomography for multiphase flow measurement,” Flow Measurement and Instrumentation, vol. 27, pp. 53–56, 2012.
  • H. X. Wang, C. Wang, and W. L. Yin, “A pre-iteration method for the inverse problem in electrical impedance tomography,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 4, pp. 1093–1096, 2004.
  • G. Lu, L. H. Peng, B. F. Zhang, and Y. B. Liao, “Preconditioned Landweber iteration algorithm for electrical capacitance tomography,” Flow Measurement and Instrumentation, vol. 16, no. 2-3, pp. 163–167, 2005.
  • J. D. Jang, S. H. Lee, K. Y. Kim, and B. Y. Choi, “Modified iterative Landweber method in electrical capacitance tomography,” Measurement Science and Technology, vol. 17, no. 7, pp. 1909–1917, 2006.
  • J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000.
  • J.-H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207–209, 2005.
  • H. Jafari and S. Momani, “Solving fractional diffusion and wave equations by modified homotopy perturbation method,” Physics Letters A, vol. 370, no. 5-6, pp. 388–396, 2007.
  • F. Shakeri and M. Dehghan, “Inverse problem of diffusion equation by He's homotopy perturbation method,” Physica Scripta, vol. 75, no. 4, pp. 551–556, 2007.
  • L. Cao, B. Han, and W. Wang, “Homotopy perturbation method for nonlinear ill-posed operator equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 10, pp. 1319–1322, 2009.
  • K.-S. Cheng, D. Isaacson, J. Newell, and D. Gisser, “Electrode models for electric current computed tomography,” IEEE Transactions on Biomedical Engineering, vol. 36, no. 9, pp. 918–924, 1989.
  • E. Somersalo, M. Cheney, and D. Isaacson, “Existence and uniqueness for electrode models for electric current computed tomography,” SIAM Journal on Applied Mathematics, vol. 52, no. 4, pp. 1023–1040, 1992.
  • E. J. Woo, P. Hua, J. G. Webster, and W. J. Tompkins, “Finite-element method in electrical impedance tomography,” Medical and Biological Engineering and Computing, vol. 32, no. 5, pp. 530–536, 1994.
  • N. Polydorides and W. R. B. Lionheart, “A matlab toolkit for three-dimensional electrical impedance tomography: a con-tribution to the electrical impedance and diffuse optical reconstruction software project,” Measurement Science and Technology, vol. 13, no. 12, pp. 1871–1883, 2002.
  • M. Hanke, A. Neubauer, and O. Scherzer, “A convergence analysis of the Landweber iteration for nonlinear ill-posed problems,” Numerische Mathematik, vol. 72, no. 1, pp. 21–37, 1995.
  • L. Cao and B. Han, “Convergence analysis of the homotopy perturbation method for solving nonlinear ill-posed operator equations,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2058–2061, 2011.
  • M. Vauhkonen, W. R. B. Lionheart, L. M. Heikkinen, P. J. Vauhkonen, and J. P. Kaipio, “A matlab package for the EIDORS project to reconstruct two-dimensional EIT images,” Physiological Measurement, vol. 22, no. 1, pp. 107–111, 2001. \endinput