Journal of Applied Mathematics

A Hybrid Cellular Automata Model of Multicellular Tumour Spheroid Growth in Hypoxic Microenvironment

Yan Cai, Jie Wu, Shixiong Xu, and Zhiyong Li

Full-text: Open access


A three-dimensional hybrid cellular automata (CA) model is developed to study the dynamic process of multicellular tumour spheroid (MTS) growth by introducing hypoxia as an important microenvironment factor which influences cell migration and cell phenotype expression. The model enables us to examine the effects of different hypoxic environments on the growth history of the MTS and to study the dynamic interactions between MTS growth and chemical environments. The results include the spatial distribution of different phenotypes of tumour cells and associated oxygen concentration distributions under hypoxic conditions. The discussion of the model system responses to the varied hypoxic conditions reveals that the improvement of the resistance of tumour cells to a hypoxic environment may be important in the tumour normalization therapy.

Article information

J. Appl. Math., Volume 2013 (2013), Article ID 519895, 10 pages.

First available in Project Euclid: 14 March 2014

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier


Cai, Yan; Wu, Jie; Xu, Shixiong; Li, Zhiyong. A Hybrid Cellular Automata Model of Multicellular Tumour Spheroid Growth in Hypoxic Microenvironment. J. Appl. Math. 2013 (2013), Article ID 519895, 10 pages. doi:10.1155/2013/519895.

Export citation


  • G. Hamilton, “Multicellular spheroids as an in vitro tumor model,” Cancer Letters, vol. 131, no. 1, pp. 29–34, 1998.
  • W. R. Inch, J. A. McCredie, and R. M. Sutherland, “Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture,” Growth, Development and Aging, vol. 34, no. 3, pp. 271–282, 1970.
  • R. M. Sutherland, J. A. McCredie, and W. R. Inch, “Growth of multicell spheroids in tissue culture as a model of nodular carcinomas,” Journal of the National Cancer Institute, vol. 46, no. 1, pp. 113–120, 1971.
  • J. M. Kelm, N. E. Timmins, C. J. Brown, M. Fussenegger, and L. K. Nielsen, “Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types,” Biotechnology and Bioengineering, vol. 83, no. 2, pp. 173–180, 2003.
  • D. Fukumura and R. K. Jain, “Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization,” Microvascular Research, vol. 74, no. 2-3, pp. 72–84, 2007.
  • D. Ribatti, B. Nico, E. Crivellato, and A. Vacca, “The structure of the vascular network of tumors,” Cancer Letters, vol. 248, no. 1, pp. 18–23, 2007.
  • A. Krogh, The Anantomy and Physiology of Capillaries, Yale University Press, New York, NY, USA, 1922.
  • G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nature Medicine, vol. 3, no. 2, pp. 177–182, 1997.
  • A. L. Harris, “Hypoxia–-a key regulatory factor in tumour growth,” Nature Reviews Cancer, vol. 2, no. 1, pp. 38–47, 2002.
  • L. B. Gardner, Q. Li, M. S. Park, W. M. Flanagan, G. L. Semenza, and C. V. Dang, “Hypoxia inhibits G1/S transition through regulation of p27 expression,” Journal of Biological Chemistry, vol. 276, no. 11, pp. 7919–7926, 2001.
  • T. Alarcón, H. M. Byrne, and P. K. Maini, “A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells,” Journal of Theoretical Biology, vol. 229, no. 3, pp. 395–411, 2004.
  • J. J. Tyson and B. Novak, “Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions,” Journal of Theoretical Biology, vol. 210, no. 2, pp. 249–263, 2001.
  • T. Nederman, B. Norling, B. Glimelius, J. Carlsson, and U. Brunk, “Demonstration of an extracellular matrix in multicellular tumor spheroids,” Cancer Research, vol. 44, no. 7, pp. 3090–3097, 1984.
  • M. T. Santini, G. Rainaldi, and P. L. Indovina, “Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids,” Critical Reviews in Oncology/Hematology, vol. 36, no. 2-3, pp. 75–87, 2000.
  • S. M. Frisch and E. Ruoslahti, “Integrins and anoikis,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 701–706, 1997.
  • F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” Journal of Biotechnology, vol. 148, no. 1, pp. 3–15, 2010.
  • P. P. Delsanto, C. Guiot, P. G. Degiorgis, C. A. Condat, Y. Mansury, and T. S. Deisboeck, “Growth model for multicellular tumor spheroids,” Applied Physics Letters, vol. 85, no. 18, pp. 4225–4227, 2004.
  • G. Schaller and M. Meyer-Hermann, “Continuum versus discrete model: a comparison for multicellular tumour spheroids,” Philosophical Transactions of the Royal Society A, vol. 364, no. 1843, pp. 1443–1464, 2006.
  • C. A. Condat and S. A. Menchón, “Ontogenetic growth of multicellular tumor spheroids,” Physica A, vol. 371, no. 1, pp. 76–79, 2006.
  • B. Brutovsky, D. Horvath, and V. Lisy, “Inverse geometric approach for the simulation of close-to-circular growth. The case of multicellular tumor spheroids,” Physica A, vol. 387, no. 4, pp. 839–850, 2008.
  • G. J. Pettet, C. P. Please, M. J. Tindall C.P., and D. L. S. McElwain, “The migration of cells in multicell tumor spheroids,” Bulletin of Mathematical Biology, vol. 63, no. 2, pp. 231–257, 2001.
  • M. Aubert, M. Badoual, S. Féreol, C. Christov, and B. Grammaticos, “A cellular automaton model for the migration of glioma cells,” Physical Biology, vol. 3, no. 2, pp. 93–100, 2006.
  • Y. Mansury and T. S. Deisboeck, “Simulating 'structure-function' patterns of malignant brain tumors,” Physica A, vol. 331, no. 1-2, pp. 219–232, 2004.
  • Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, and J. P. Freyer, “A multiscale model for avascular tumor growth,” Biophysical Journal, vol. 89, no. 6, pp. 3884–3894, 2005.
  • A. R. A. Anderson, “A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion,” Mathematical Medicine and Biology, vol. 22, no. 2, pp. 163–186, 2005.
  • J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, 1966.
  • Y. Cai, S. Xu, J. Wu, and Q. Long, “Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion,” Journal of Theoretical Biology, vol. 279, no. 1, pp. 90–101, 2011.
  • T. Roose, S. J. Chapman, and P. K. Maini, “Mathematical models of avascular tumor growth,” SIAM Review, vol. 49, no. 2, pp. 179–208, 2007.
  • J. P. Freyer and R. M. Sutherland, “Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply,” Cancer Research, vol. 46, no. 7, pp. 3504–3512, 1986.
  • J. P. Freyer and R. M. Sutherland, “Proliferative and clonogenic heterogeneity of cells from EMT6/Ro multicellular spheroids induced by the glucose and oxygen supply,” Cancer Research, vol. 46, no. 7, pp. 3513–3520, 1986.
  • J. P. Freyer, “Role of necrosis in regulating the growth saturation of multicellular spheroids,” Cancer Research, vol. 48, no. 9, pp. 2432–2439, 1988.
  • Y. Cai, K. Gulnar, H. Zhang, J. Cao, S. Xu, and Q. Long, “Numerical simulation of tumor-induced angiogenesis influenced by the extra-cellular matrix mechanical environment,” Acta Mechanica Sinica/Lixue Xuebao, vol. 25, no. 6, pp. 889–895, 2009.
  • Y. Cai, J. Wu, S. X. Xu et al., “Numerical simulation of inhibiting effects on solid tumour cells in anti-angiogenic therapy: application of coupled mathematical model of angiogenesis with tumour growth,” Applied Mathematics and Mechanics, vol. 32, no. 10, pp. 1287–1296, 2011.
  • S. A. Menchón and C. A. Condat, “Quiescent cells: a natural way to resist chemotherapy,” Physica A, vol. 390, no. 20, pp. 3354–3361, 2011.