Geometry & Topology

Rigidity of convex divisible domains in flag manifolds

Wouter Van Limbeek and Andrew Zimmer

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In contrast to the many examples of convex divisible domains in real projective space, we prove that up to projective isomorphism there is only one convex divisible domain in the Grassmannian of p –planes in 2 p when p > 1 . Moreover, this convex divisible domain is a model of the symmetric space associated to the simple Lie group  SO ( p , p ) .

Article information

Geom. Topol., Volume 23, Number 1 (2019), 171-240.

Received: 16 May 2017
Accepted: 21 July 2018
First available in Project Euclid: 12 March 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C24: Rigidity results 57N16: Geometric structures on manifolds [See also 57M50]
Secondary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx] 22F50: Groups as automorphisms of other structures 52A20: Convex sets in n dimensions (including convex hypersurfaces) [See also 53A07, 53C45] 57S30: Discontinuous groups of transformations

flag manifolds geometric structures convex divisible domains Hilbert metric rigidity Grassmannian


Van Limbeek, Wouter; Zimmer, Andrew. Rigidity of convex divisible domains in flag manifolds. Geom. Topol. 23 (2019), no. 1, 171--240. doi:10.2140/gt.2019.23.171.

Export citation


  • R C Alperin, An elementary account of Selberg's lemma, Enseign. Math. 33 (1987) 269–273
  • S A Ballas, J Danciger, G-S Lee, Convex projective structures on nonhyperbolic three-manifolds, Geom. Topol. 22 (2018) 1593–1646
  • W Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. 122 (1985) 597–609
  • T J Barth, Convex domains and Kobayashi hyperbolicity, Proc. Amer. Math. Soc. 79 (1980) 556–558
  • Y Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000) 149–193
  • Y Benoist, Convexes divisibles, II, Duke Math. J. 120 (2003) 97–120
  • Y Benoist, Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. Inst. Hautes Études Sci. 97 (2003) 181–237
  • Y Benoist, Convexes divisibles, I, from “Algebraic groups and arithmetic” (S G Dani, G Prasad, editors), Tata Inst. Fund. Res., Mumbai (2004) 339–374
  • Y Benoist, Convexes divisibles, IV: Structure du bord en dimension $3$, Invent. Math. 164 (2006) 249–278
  • Y Benoist, A survey on divisible convex sets, from “Geometry, analysis and topology of discrete groups” (L Ji, K Liu, L Yang, S-T Yau, editors), Adv. Lect. Math. 6, Int., Somerville, MA (2008) 1–18
  • J-P Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229–332
  • A Borel, Linear algebraic groups, 2nd edition, Graduate Texts in Mathematics 126, Springer (1991)
  • M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)
  • K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)
  • K Burns, R Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math. 65 (1987) 35–59
  • K Burns, R Spatzier, On topological Tits buildings and their classification, Inst. Hautes Études Sci. Publ. Math. 65 (1987) 5–34
  • S Choi, G-S Lee, L Marquis, Convex projective generalized Dehn filling, preprint (2016)
  • S Choi, G-S Lee, L Marquis, Deformations of convex real projective manifolds and orbifolds, preprint (2016)
  • D Cooper, D D Long, S Tillmann, On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181–251
  • M Crampon, Entropies of strictly convex projective manifolds, J. Mod. Dyn. 3 (2009) 511–547
  • B Farb, S Weinberger, Isometries, rigidity and universal covers, Ann. of Math. 168 (2008) 915–940
  • S Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989) 109–149
  • S Frankel, Applications of affine geometry to geometric function theory in several complex variables, I: Convergent rescalings and intrinsic quasi-isometric structure, from “Several complex variables and complex geometry, II” (E Bedford, J P D'Angelo, R E Greene, S G Krantz, editors), Proc. Sympos. Pure Math. 52, Amer. Math. Soc., Providence, RI (1991) 183–208
  • W Fulton, J Harris, Representation theory: a first course, Graduate Texts in Mathematics 129, Springer (1991)
  • A Geng, When are radicals of Lie groups lattice-hereditary?, New York J. Math. 21 (2015) 321–331
  • W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791–845
  • F Guéritaud, O Guichard, F Kassel, A Wienhard, Compactification of certain Clifford–Klein forms of reductive homogeneous spaces, Michigan Math. J. 66 (2017) 49–84
  • O Guichard, A Wienhard, Convex foliated projective structures and the Hitchin component for ${\rm PSL}_4({\mathbb R})$, Duke Math. J. 144 (2008) 381–445
  • O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357–438
  • S Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics 80, Academic, New York (1978)
  • D Johnson, J J Millson, Deformation spaces associated to compact hyperbolic manifolds, from “Discrete groups in geometry and analysis” (R Howe, editor), Progr. Math. 67, Birkhäuser, Boston, MA (1987) 48–106
  • M Kapovich, Convex projective structures on Gromov–Thurston manifolds, Geom. Topol. 11 (2007) 1777–1830
  • M Kapovich, B Leeb, J Porti, Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol. 22 (2018) 157–234
  • A Karlsson, G A Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. 48 (2002) 73–89
  • K-T Kim, On the automorphism groups of convex domains in $\mathbb C^n$, Adv. Geom. 4 (2004) 33–40
  • K-T Kim, S G Krantz, Complex scaling and geometric analysis of several variables, Bull. Korean Math. Soc. 45 (2008) 523–561
  • S Kobayashi, Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) 129–135
  • J-L Koszul, Déformations de connexions localement plates, Ann. Inst. Fourier $($Grenoble$)$ 18 (1968) 103–114
  • L Marquis, Around groups in Hilbert geometry, from “Handbook of Hilbert geometry” (A Papadopoulos, M Troyanov, editors), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc., Zürich (2014) 207–261
  • T Nagano, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965) 428–453
  • A L Onishchik, È B Vinberg, Lie groups and Lie algebras, III: Structure of Lie groups and Lie algebras, Encyclopaedia of Mathematical Sciences 41, Springer (1994)
  • G Prasad, ${\mathbb R}$–regular elements in Zariski-dense subgroups, Quart. J. Math. Oxford Ser. 45 (1994) 541–545
  • J-F Quint, Convexes divisibles (d'après Yves Benoist), from “Séminaire Bourbaki”, Astérisque 332, Soc. Mat. de France, Paris (2010) exposé 999, 45–73
  • M S Raghunathan, Discrete subgroups of Lie groups, Ergeb. Math. Grenzgeb. 68, Springer (1972)
  • J Vey, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa 24 (1970) 641–665
  • E B Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072–1112 In Russian; translated in Math. USSR-Izv. 5 (1971)1083–1119
  • E B Vinberg, V G Kac, Quasi-homogeneous cones, Mat. Zametki 1 (1967) 347–354 In Russian; translated in Math. Notes 1 (1967) 231–235
  • A Zimmer, Proper quasi-homogeneous domains in flag manifolds and geometric structures, preprint (2015)