Open Access
2020 On Dantzig and Lasso estimators of the drift in a high dimensional Ornstein-Uhlenbeck model
Gabriela Ciołek, Dmytro Marushkevych, Mark Podolskij
Electron. J. Statist. 14(2): 4395-4420 (2020). DOI: 10.1214/20-EJS1775
Abstract

In this paper we present new theoretical results for the Dantzig and Lasso estimators of the drift in a high dimensional Ornstein-Uhlenbeck model under sparsity constraints. Our focus is on oracle inequalities for both estimators and error bounds with respect to several norms. In the context of the Lasso estimator our paper is strongly related to [11], where the same problem was investigated under row sparsity. We improve their rates and also prove the restricted eigenvalue property solely under ergodicity assumption on the model. Finally, we demonstrate a numerical analysis to uncover the finite sample performance of the Dantzig and Lasso estimators.

References

1.

[1] Basu, S. and Michailidis, G. (2015). Regularized estimation in sparse high-dimensional time series models., Annals of Statistics 43 1535-1567. 1317.62067 10.1214/15-AOS1315 euclid.aos/1434546214[1] Basu, S. and Michailidis, G. (2015). Regularized estimation in sparse high-dimensional time series models., Annals of Statistics 43 1535-1567. 1317.62067 10.1214/15-AOS1315 euclid.aos/1434546214

2.

[2] Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector., Annals of Statistics 37 1705-1732. 1173.62022 10.1214/08-AOS620 euclid.aos/1245332830[2] Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector., Annals of Statistics 37 1705-1732. 1173.62022 10.1214/08-AOS620 euclid.aos/1245332830

3.

[3] Bolley, F., Cañizo, J. A. and Carrillo, J. A. (2011). Stochastic mean-field limit: non-Lipschitz forces and swarming., Mathematical Models and Methods in Applied Sciences 21 2179-2210. 1273.82041 10.1142/S0218202511005702[3] Bolley, F., Cañizo, J. A. and Carrillo, J. A. (2011). Stochastic mean-field limit: non-Lipschitz forces and swarming., Mathematical Models and Methods in Applied Sciences 21 2179-2210. 1273.82041 10.1142/S0218202511005702

4.

[4] Bühlmann, P. and van de Geer, S. (2011)., Statistics for high-dimensional data. Springer Series in Statistics, Springer.[4] Bühlmann, P. and van de Geer, S. (2011)., Statistics for high-dimensional data. Springer Series in Statistics, Springer.

5.

[5] Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when $p$ is much larger than $n$., Annals of Statistics 35 2313-2351. 1139.62019 10.1214/009053606000001523 euclid.aos/1201012958[5] Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when $p$ is much larger than $n$., Annals of Statistics 35 2313-2351. 1139.62019 10.1214/009053606000001523 euclid.aos/1201012958

6.

[6] Carmona, R. and Zhu, X. (2016). A probabilistic approach to mean field games with major and minor players., Annals of Applied Probability 26 1535-1580. 1342.93121 10.1214/15-AAP1125 euclid.aoap/1465905011[6] Carmona, R. and Zhu, X. (2016). A probabilistic approach to mean field games with major and minor players., Annals of Applied Probability 26 1535-1580. 1342.93121 10.1214/15-AAP1125 euclid.aoap/1465905011

7.

[7] Dicker, L., Li, Y. and Zhao, S. D. (2014). The Dantzig selector for censored linear regression models., Statistica Sinica 24 251-275. 1285.62075[7] Dicker, L., Li, Y. and Zhao, S. D. (2014). The Dantzig selector for censored linear regression models., Statistica Sinica 24 251-275. 1285.62075

8.

[8] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties., Journal of the American Statistical Association 96 1348-1360. 1073.62547 10.1198/016214501753382273[8] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties., Journal of the American Statistical Association 96 1348-1360. 1073.62547 10.1198/016214501753382273

9.

[9] Faugeras, O., Touboul, J. and Cessac, B. (2009). A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs., Frontiers in Computational Neuroscience 3 1-28.[9] Faugeras, O., Touboul, J. and Cessac, B. (2009). A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs., Frontiers in Computational Neuroscience 3 1-28.

10.

[10] Fujimori, K. (2019). The Dantzig selector for a linear model of diffusion processes., Statistical Inference for Stochastic Processes 22 475-498. 1431.62231 10.1007/s11203-018-9191-y[10] Fujimori, K. (2019). The Dantzig selector for a linear model of diffusion processes., Statistical Inference for Stochastic Processes 22 475-498. 1431.62231 10.1007/s11203-018-9191-y

11.

[11] Gaïffas, S. and Matulewicz, G. (2019). Sparse inference of the drift of a high-dimensional Ornstein-Uhlenbeck process., Journal of Multivariate Analysis 169 1-20. 1404.60049 10.1016/j.jmva.2018.08.005[11] Gaïffas, S. and Matulewicz, G. (2019). Sparse inference of the drift of a high-dimensional Ornstein-Uhlenbeck process., Journal of Multivariate Analysis 169 1-20. 1404.60049 10.1016/j.jmva.2018.08.005

12.

[12] Gregorio, A. D. and Iacus, S. (2012). Adaptive Lasso-type estimation for multivariate diffusion processes., Econometric Theory 28 838-860. 1419.62170 10.1017/S0266466611000806[12] Gregorio, A. D. and Iacus, S. (2012). Adaptive Lasso-type estimation for multivariate diffusion processes., Econometric Theory 28 838-860. 1419.62170 10.1017/S0266466611000806

13.

[13] Jackson, M. (2008)., Social and economic networks. Princeton University Press, Princeton, NJ. 1149.91051[13] Jackson, M. (2008)., Social and economic networks. Princeton University Press, Princeton, NJ. 1149.91051

14.

[14] Jacod, J. and Protter, P. (2012)., Discretization of processes. Stochastic Modelling and Applied Probability, Springer. 1259.60004[14] Jacod, J. and Protter, P. (2012)., Discretization of processes. Stochastic Modelling and Applied Probability, Springer. 1259.60004

15.

[15] James, G., Radchenko, P. and Lv, J. (2009). Dasso: connections between the Dantzig selector and Lasso., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71 127-142. 1231.62129 10.1111/j.1467-9868.2008.00668.x[15] James, G., Radchenko, P. and Lv, J. (2009). Dasso: connections between the Dantzig selector and Lasso., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71 127-142. 1231.62129 10.1111/j.1467-9868.2008.00668.x

16.

[16] Kessler, M. and Rahbek, A. (2001). Asymptotic likelihood based inference for co-integrated homogenous Gaussian diffusions., Scandinavian Journal of Statistics 28 455-470. 0981.62069 10.1111/1467-9469.00248[16] Kessler, M. and Rahbek, A. (2001). Asymptotic likelihood based inference for co-integrated homogenous Gaussian diffusions., Scandinavian Journal of Statistics 28 455-470. 0981.62069 10.1111/1467-9469.00248

17.

[17] Küchler, U. and Sørensen, M. (1997)., Exponential families of stochastic processes. Springer Series in Statistics, Springer.[17] Küchler, U. and Sørensen, M. (1997)., Exponential families of stochastic processes. Springer Series in Statistics, Springer.

18.

[18] Küchler, U. and Sørensen, M. (1999). A note on limit theorems for multivariate martingales., Bernoulli 5 483-493.[18] Küchler, U. and Sørensen, M. (1999). A note on limit theorems for multivariate martingales., Bernoulli 5 483-493.

19.

[19] Kutoyants, Y. A. (2004)., Statistical inference for ergodic diffusion processes. Springer Series in Statistics, Springer. 1038.62073[19] Kutoyants, Y. A. (2004)., Statistical inference for ergodic diffusion processes. Springer Series in Statistics, Springer. 1038.62073

20.

[20] McKean, H. P. (1966). Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas., Archive for Rational Mechanics and Analysis 21 343-367. 1302.60049 10.1007/BF00264463[20] McKean, H. P. (1966). Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas., Archive for Rational Mechanics and Analysis 21 343-367. 1302.60049 10.1007/BF00264463

21.

[21] McKean, H. P. (1967). Propagation of chaos for a class of non-linear parabolic equations., In 7 41-57. Stochastic Differential Equations (Lecture Series in Differential Equations, Session Catholic University, Air Force Office of Scientific Research, ArlingtonMR0233437[21] McKean, H. P. (1967). Propagation of chaos for a class of non-linear parabolic equations., In 7 41-57. Stochastic Differential Equations (Lecture Series in Differential Equations, Session Catholic University, Air Force Office of Scientific Research, ArlingtonMR0233437

22.

[22] Nourdin, I. and Viens, F. G. (2009). Density formula and concentration inequalities with Malliavin calculus., Electronic Journal of Probability 14 2287-2309. 1192.60066 10.1214/EJP.v14-707[22] Nourdin, I. and Viens, F. G. (2009). Density formula and concentration inequalities with Malliavin calculus., Electronic Journal of Probability 14 2287-2309. 1192.60066 10.1214/EJP.v14-707

23.

[23] Nualart, D. (2006)., The Malliavin calculus and related topics, 2nd ed. Probability and Its Applications, Springer. 1099.60003[23] Nualart, D. (2006)., The Malliavin calculus and related topics, 2nd ed. Probability and Its Applications, Springer. 1099.60003

24.

[24] Periera, J. B. A. and Ibrahimi, M. (2014). Support recovery for the drift coefficient of high-dimensional diffusions., IEEE Trnasactions of Information Theory 60 4026-4049. 1360.62281 10.1109/TIT.2014.2317178[24] Periera, J. B. A. and Ibrahimi, M. (2014). Support recovery for the drift coefficient of high-dimensional diffusions., IEEE Trnasactions of Information Theory 60 4026-4049. 1360.62281 10.1109/TIT.2014.2317178

25.

[25] Revuz, D. and Yor, M. (2005)., Continuous martingales and Brownian motion, 3rd ed. A Series of Comprehensive Studies in Mathematics, Springer. 1087.60040[25] Revuz, D. and Yor, M. (2005)., Continuous martingales and Brownian motion, 3rd ed. A Series of Comprehensive Studies in Mathematics, Springer. 1087.60040

26.

[26] Spokoiny, V. (2012). Parametric estimation. Finite sample theory., Annals of Statistics 40 2877-2909. 1296.62051 10.1214/12-AOS1054 euclid.aos/1360332187[26] Spokoiny, V. (2012). Parametric estimation. Finite sample theory., Annals of Statistics 40 2877-2909. 1296.62051 10.1214/12-AOS1054 euclid.aos/1360332187

27.

[27] Spokoiny, V. (2017). Penalized maximum likelihood estimation and effective dimension., Annales de l’Institut Henri Poincaré 53 1389-429.[27] Spokoiny, V. (2017). Penalized maximum likelihood estimation and effective dimension., Annales de l’Institut Henri Poincaré 53 1389-429.

28.

[28] Sznitman, A. S. (1991). Topics in propagation of chaos. In, École d’Été de Probabilités de Saint Flour XIX - 1989 (P. L. Hennequin, ed.) 165-251. volume 1464 of Lecture Notes in Mathematics, Springer, Berlin.[28] Sznitman, A. S. (1991). Topics in propagation of chaos. In, École d’Été de Probabilités de Saint Flour XIX - 1989 (P. L. Hennequin, ed.) 165-251. volume 1464 of Lecture Notes in Mathematics, Springer, Berlin.

29.

[29] Vershynin, R. (2009)., Lectures in Geometric Functional Analysis. available at romanv/papers/GFA-book/GFA-book.pdf.[29] Vershynin, R. (2009)., Lectures in Geometric Functional Analysis. available at romanv/papers/GFA-book/GFA-book.pdf.

30.

[30] Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties., Journal of the American Statistical Association 101 1418-1429. 1171.62326 10.1198/016214506000000735[30] Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties., Journal of the American Statistical Association 101 1418-1429. 1171.62326 10.1198/016214506000000735
Gabriela Ciołek, Dmytro Marushkevych, and Mark Podolskij "On Dantzig and Lasso estimators of the drift in a high dimensional Ornstein-Uhlenbeck model," Electronic Journal of Statistics 14(2), 4395-4420, (2020). https://doi.org/10.1214/20-EJS1775
Received: 1 July 2020; Published: 2020
Vol.14 • No. 2 • 2020
Back to Top