Abstract
Public-use survey data are an important source of information for researchers in social sciences and health studies to build statistical models and make inferences on the target finite population. This paper presents two general inferential tools through the pseudo empirical likelihood and the sample empirical likelihood methods. Theoretical results on point estimation and linear or nonlinear hypothesis tests involving parameters defined through estimating equations are established, and practical issues with the implementation of the proposed methods are discussed. Results from simulation studies and an application to the 2016 General Social Survey dataset of Statistics Canada show that the proposed methods work well under different scenarios. The inferential procedures and theoretical results presented in the paper make the empirical likelihood a practically useful tool for users of complex survey data.
Citation
Puying Zhao. J. N. K. Rao. Changbao Wu. "Empirical likelihood inference with public-use survey data." Electron. J. Statist. 14 (1) 2484 - 2509, 2020. https://doi.org/10.1214/20-EJS1726
Information