Open Access
2017 Semiparametrically efficient estimation of constrained Euclidean parameters
Nanang Susyanto, Chris A. J. Klaassen
Electron. J. Statist. 11(2): 3120-3140 (2017). DOI: 10.1214/17-EJS1308

Abstract

Consider a quite arbitrary (semi)parametric model for i.i.d. observations with a Euclidean parameter of interest and assume that an asymptotically (semi)parametrically efficient estimator of it is given. If the parameter of interest is known to lie on a general surface (image of a continuously differentiable vector valued function), we have a submodel in which this constrained Euclidean parameter may be rewritten in terms of a lower-dimensional Euclidean parameter of interest. An estimator of this underlying parameter is constructed based on the given estimator of the original Euclidean parameter, and it is shown to be (semi)parametrically efficient. It is proved that the efficient score function for the underlying parameter is determined by the efficient score function for the original parameter and the Jacobian of the function defining the general surface, via a chain rule for score functions. Efficient estimation of the constrained Euclidean parameter itself is considered as well.

Our general estimation method is applied to location-scale, Gaussian copula and semiparametric regression models, and to parametric models.

Citation

Download Citation

Nanang Susyanto. Chris A. J. Klaassen. "Semiparametrically efficient estimation of constrained Euclidean parameters." Electron. J. Statist. 11 (2) 3120 - 3140, 2017. https://doi.org/10.1214/17-EJS1308

Information

Received: 1 September 2016; Published: 2017
First available in Project Euclid: 25 August 2017

zbMATH: 1373.62115
MathSciNet: MR3694578
Digital Object Identifier: 10.1214/17-EJS1308

Subjects:
Primary: 62F12 , 62F30
Secondary: 62F10

Keywords: Efficient estimator , Gaussian copula , restricted parameter , Semiparametric estimation , semiparametric submodels , underlying parameter

Vol.11 • No. 2 • 2017
Back to Top