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1. Introduction

LetX1, . . . , Xn be i.i.d. copies ofX taking values in the measurable space (X ,A)
in a semiparametric model with Euclidean parameter θ ∈ Θ where Θ is an open
subset of Rk. We denote this semiparametric model by

P = {Pθ,G : θ ∈ Θ, G ∈ G} . (1.1)

Typically, the nuisance parameter space G is a subset of a Banach or Hilbert
space. This space may also be finite dimensional, thus resulting in a parametric
model.

We assume an asymptotically efficient estimator θ̂n = θ̂n(X1, . . . , Xn) is given
of the parameter of interest θ, which under regularity conditions means that

√
n

(
θ̂n − θ − 1

n

n∑
i=1

�̃(Xi; θ,G,P)

)
→Pθ,G

0 (1.2)

holds. Here �̃(·; θ,G,P) is the efficient influence function at Pθ,G for estimation
of θ within P and

�̇(·; θ,G,P) =

(∫
X
�̃(x; θ,G,P)�̃T(x; θ,G,P)dPθ,G(x)

)−1

�̃(·; θ,G,P) (1.3)

is the corresponding efficient score function at Pθ,G for estimation of θ within
P .

The topic of this paper is asymptotically efficient estimation when it is known
that θ lies on a general surface, or equivalently, when it is known that θ is
determined by a lower dimensional parameter via a continuously differentiable
function, which we denote by

θ = f(ν), ν ∈ N. (1.4)

Here f : N ⊂ R
d → R

k with d < k is known, N is open, the Jacobian

ḟ(ν) =

(
∂fi(ν)

∂νj

)i=1,...,k

j=1,...,d

(1.5)
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of f is assumed to be of full rank on N , and ν is the unknown d-dimensional
parameter to be estimated. Thus, we focus on the (semi)parametric model

Q =
{
Pf(ν),G : ν ∈ N, G ∈ G

}
⊂ P . (1.6)

In order for ν to be identifiable we have to assume that f(·) is invertible; note
that θ itself is identifiable as it is assumed that it can be estimated efficiently.

The first main result of this paper is that a semiparametrically efficient es-
timator of ν, the parameter of interest, has to be asymptotically linear with
efficient score function for estimation of ν equal to

�̇(·; ν,G,Q) = ḟT(ν)�̇(·; θ,G,P). (1.7)

Such a semiparametrically efficient estimator of the parameter of interest can
be defined in terms of f(·) and the efficient estimator θ̂n of θ; see equation (4.1)
in Section 4. This is our second main result.

How (1.7) is related to the chain rule for differentiation will be explained
in Section 2, which proves this chain rule for score functions within regular
parametric (sub)models. The semiparametric lower bound for estimators of ν
is obtained via the Hájek-LeCam Convolution Theorem for regular parametric
models and without projection techniques in Section 3. In Section 4 efficient
estimators within Q of ν and θ = f(ν) are constructed. The generality of our
results facilitates the analysis of numerous statistical models. We discuss some of
such parametric and semiparametric models and related literature in Section 5.
Technicalities are collected in Appendices A and B.

Several examples of estimation under constraints for nonparametric models
have been studied in [2]. The efficient influence function for such a constrained
nonparametric model is determined by projection of the efficient influence func-
tion for the unconstrained model on the tangent space of the constrained model;
see e.g. Example 3.3.3 of [2]. The constraints are formulated via equations the
distributions should satisfy. Some such equations for distributions can be refor-
mulated for semiparametric models in terms of equations for the Euclidean pa-
rameter. For semiparametric models constrained by such equations the efficient
influence function can also be determined by projection of the efficient influence
function for the unconstrained semiparametric model, as we will show in a com-
panion paper; see [12]. Quite many semiparametric models with constraints by
equations the Euclidean parameters should satisfy, can be reparametrized as in
(1.6), but not all. Likewise, not all submodels (1.6) can be phrased via equations.
Simple counterexamples to prove these claims are given in the companion paper.
In these counterexamples the condition that N be open, is crucial. This looks
like a minor feature. However, in asymptotic statistics one typically assumes the
parameter space to be open in order to avoid (interesting) pathologies at the
boundary.

Therefore the topics of the present paper and its companion one do not
coincide completely. We do not use projection techniques in the present paper,
but base our approach directly on the concept of least favorable submodel and
on the parametric version of the Hájek-LeCam convolution theorem, and not on
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its generalization to the semiparametric situation as given by Theorem 3.3.2 and
Theorem 3.4.1 of [2] and by Theorem 25.20 of [19]. This new approach seems
to be well suited to the formulation of the main Theorem 3.1 and it makes our
proofs elementary and pretty straightforward.

Most, if not all, papers on estimation in constrained parametric models focus
on constrained (or restricted) maximum likelihood estimation implemented via
Lagrange multipliers. The first paper on this subject seems [1]. Another early
treatise related to the theme of the present paper for the parametric case is
[15]. This book studies classical and Bayesian estimation for parametric models
under constraints in terms of equalities and inequalities.

The topic of the present paper should not be confused with estimation of
the parameter θ when it is known to lie in a subset with nonempty interior of
the original parameter space. This situation corresponds to d = k with f(·) the
identity and ν = θ in (1.4)–(1.6). If an asymptotically efficient estimator θ̂n is
given for the unconstrained model, this estimator is also asymptotically efficient
within the constrained model, as N is open and hence θ̂n takes values in N with
probability tending to 1. A comprehensive treatment of finite sample estimation
problems with N a proper subset of Θ with the same dimension, may be found
in [20].

2. The chain rule for score functions

The basic building block for the asymptotic theory of semiparametric models
as presented in e.g. [2] is the concept of regular parametric model. Let PΘ =
{Pθ : θ ∈ Θ} with Θ ⊂ R

k open be a parametric model with all Pθ dominated
by a σ-finite measure μ on (X ,A) . Denote the density of Pθ with respect to μ by
p(θ) = p(·; θ,PΘ) and the L2(μ)-norm by ‖ · ‖μ . If for each θ0 ∈ Θ there exists

a k-dimensional column vector �̇(θ0,PΘ) of elements of L2(Pθ0), the so-called
score function, such that the Fréchet differentiability

‖
√

p(θ)−
√
p(θ0)− 1

2 (θ − θ0)
T
�̇(θ0,PΘ)

√
p(θ0) ‖μ

= o(|θ − θ0|), θ → θ0, (2.1)

holds and the k × k Fisher information matrix

I(θ0) =

∫
X
�̇(θ0,PΘ)�̇

T(θ0,PΘ)dPθ0 (2.2)

is nonsingular, and, moreover, the map θ �→ �̇(θ,PΘ)
√

p(θ) from Θ to Lk
2(μ)

is continuous, then PΘ is called a regular parametric model. Often the score
function may be determined by computing the logarithmic derivative of the
density with respect to θ; cf. Proposition 2.1.1 of [2]. We will call P from (1.1)
a regular semiparametric model if for all G ∈ G

PΘ,G = {Pθ,G : θ ∈ Θ} (2.3)

is a regular parametric model.
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Fix θ0 ∈ Θ and G0 ∈ G, and write Pθ0,G0 = P0. Let ψ : Θ → G with
ψ(θ0) = G0 be such that

Pψ =
{
Pθ,ψ(θ) : θ ∈ Θ

}
(2.4)

is a regular parametric submodel of P with score function �̇(θ0,Pψ) at θ0 and
Fisher information matrix I(θ0,Pψ), say. Let the density of Pθ,ψ(θ) with respect
to μ be denoted by q(θ). Since Pψ is a regular parametric model the score

function �̇(θ0,Pψ) for θ at θ0 within Pψ satisfies (cf. (2.1))

‖
√
q(θ)−

√
q(θ0)− 1

2 (θ − θ0)
T
�̇(θ0,Pψ)

√
q(θ0) ‖μ

= o(|θ − θ0|), θ → θ0. (2.5)

Considering now the (semi)parametric submodel Q from(1.6) we fix ν0 and
write f(ν0) = θ0 and f(ν) = θ. Within Q the Fréchet differentiability (2.5)
yields

‖
√

q(f(ν))−
√

q(f(ν0))− 1
2 (f(ν)− f(ν0))

T
�̇(f(ν0),Pψ)

√
q(f(ν0)) ‖μ

= o(|f(ν)− f(ν0)|), f(ν) → f(ν0), (2.6)

and hence

‖
√

q(f(ν))−
√

q(f(ν0))− 1
2 (ν − ν0)

T ḟT(ν0)�̇(θ0,Pψ)
√

q(f(ν0)) ‖μ
= o(|ν − ν0|), ν → ν0,(2.7)

in view of the differentiability of f(·). Since ḟ(·) is continuous, this means that

Qψ =
{
Pf(ν),ψ(f(ν)) : ν ∈ N

}
(2.8)

is a regular parametric submodel of Q with score function

�̇(ν0,Qψ) = ḟT(ν0)�̇(θ0,Pψ) (2.9)

for ν at P0 and Fisher information matrix

ḟT(ν0)I(θ0,Pψ)ḟ(ν0) = ḟT(ν0)

∫
X
�̇(θ0,Pψ)�̇

T(θ0,Pψ)dP0 ḟ(ν0). (2.10)

We have proved

Proposition 2.1. Let P as in (1.1) be a regular semiparametric model and let
Q as in (1.6) be a regular semiparametric submodel with f : N ⊂ R

d → R
k, d <

k, N open, a continuously differentiable function and the Jacobian ḟ(·) of full
rank defined as in (1.4) and (1.5). If there exists a regular parametric submodel
Pψ of P with score function �̇(θ0,Pψ) for θ at θ0 = f(ν0), then there exists a

regular parametric submodel Qψ of Q with score function �̇(ν0,Qψ) for ν at ν0
satisfying (2.9).

This Proposition is also valid for parametric models, as may be seen by
choosing G finite dimensional or even degenerate. The basic version of the chain
rule for score functions is for such a parametric model PΘ. We have chosen the
more elaborate formulation of Proposition 2.1 since we are going to apply the
chain rule for such parametric submodels Pψ of semiparametric models P .
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3. Convolution theorem and main result

An estimator θ̂n of θ within the regular semiparametric model P is called (lo-
cally) regular at P0 = Pθ0,G0 if it is (locally) regular at P0 within Pψ for all reg-
ular parametric submodels Pψ of P containing PΘ,G0 . According to the Hájek-
LeCam Convolution Theorem for regular parametric models (see e.g. Section
2.3, in particular the Note on page 27, of [2]) this implies that for such a regu-

lar estimator θ̂n of θ within P the normed estimation error
√
n(θ̂n − θ0) has a

limit distribution under P0 that is the convolution of a normal distribution with
mean 0 and covariance matrix I−1(θ0,Pψ) and another distribution, for any
regular parametric submodel Pψ containing P0. If there exists ψ = ψ0 such that

this last distribution is degenerate at 0, we call θ̂n (locally) efficient at P0 and
Pψ0 a least favorable parametric submodel for estimation of θ within P at P0.

Then the Hájek-LeCam Convolution Theorem also implies that θ̂n is asymp-
totically linear in the efficient influence function �̃(θ0, G0,P) = �̃(·; θ0, G0,P)
satisfying

�̃(θ0, G0,P) = �̃(θ0,Pψ0) = I−1(θ0,Pψ0)�̇(θ0,Pψ0), (3.1)

which means

√
n

(
θ̂n − θ0 −

1

n

n∑
i=1

�̃(Xi; θ0, G0,P)

)
→P0 0. (3.2)

The argument above can be extended to the more general situation that there
exists a least favorable sequence of parametric submodels indexed by ψj , j =

1, 2, . . . , such that the corresponding score functions �̇(θ0,Pψj ) for θ at θ0 within

model Pψj converge in Lk
2(P0) to �̇(θ0, G0,P) = �̇(·; θ0, G0,P), say. A regular

estimator θ̂n of θ within P is called efficient then, if it is asymptotically linear as
in (3.2) with efficient influence function �̃(θ0, G0,P) = �̃(·; θ0, G0,P) satisfying

�̃(θ0, G0,P) =

(∫
X
�̇(θ0, G0,P)�̇T (θ0, G0,P)dP0

)−1

�̇(θ0, G0,P)

= I−1(θ0, G0,P)�̇(θ0, G0,P). (3.3)

Indeed, by the Convolution Theorem for regular parametric models the con-
vergence ⎛

⎜⎜⎝
√
n

(
θ̂n − θ0 − 1

n

n∑
i=1

�̃(Xi; θ0,Pψj )

)
1√
n

n∑
i=1

�̃(Xi; θ0,Pψj )

⎞
⎟⎟⎠→P0

(
RP,j

ZP,j

)
(3.4)

holds with the k-vectors RP,j and ZP,j independent and ZP,j normal with
mean 0 and covariance matrix I−1(θ0,Pψj ). Taking limits as j → ∞ we see

by tightness arguments and by the convergence of �̇(θ0,Pψj ) to �̇(θ0, G0,P) in
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Lk
2(P0), that also⎛

⎜⎜⎝
√
n

(
θ̂n − θ0 − 1

n

n∑
i=1

�̃(Xi; θ0, G0,P)

)
1√
n

n∑
i=1

�̃(Xi; θ0, G0,P)

⎞
⎟⎟⎠→P0

(
RP
ZP

)
(3.5)

holds with RP and ZP independent k-vectors and ZP normally distributed with
mean 0 and covariance matrix I−1(θ0, G0,P). To be more precise, consider the
difference between the left hand sides of (3.5) and (3.4). The second half of
this vector of differences equals minus the first half. Both halves converge in
distribution by the central limit theorem to a normal distribution with mean 0
and covariance matrix

E

([
�̃(X1; θ0, G0,P)− �̃(X1; θ0,Pψj )

] [
�̃(X1; θ0, G0,P)− �̃(X1; θ0,Pψj )

]T)
(3.6)

as n → ∞. This implies that the vector of differences is tight and, as the left
hand side of (3.4) is tight, that the left hand side of (3.5) is tight as well. Let
(RT

P , Z
T
P )

T be a limit point of the left hand side of (3.5). As (3.6) converges to
0 for j → ∞, this limit point is also the limit in distribution of (RT

P,j , Z
T
P,j)

T .

Consequently, all limit points (RT
P , Z

T
P )

T have the same distribution. By the
independence of RP,j and ZP,j for all j we obtain

E
(
exp
{
isTRP + itTZP

})
= lim

j→∞
E
(
exp
{
isTRP,j + itTZP,j

})
= lim

j→∞
E
(
exp
{
isTRP,j

})
E
(
exp
{
isTZP,j

})
(3.7)

= E
(
exp
{
isTRP

})
E
(
exp
{
itTZP

})
and hence (3.5) with RP and ZP independent. This independence turns (3.5)
into a convolution theorem.

If RP is degenerate at 0, then θ̂n is locally asymptotically efficient at P0

within P and the sequence of regular parametric submodels Pψj is least favorable
indeed.

Now, let us assume such a least favorable sequence and efficient estimator θ̂n
exist at P0 = Pθ0,G0 with θ0 = f(ν0) and f(·) from (1.4) and (1.5) continuously
differentiable. By the chain rule for score functions from Proposition 2.1 the
score function �̇(ν0,Qψj ) for ν at ν0 within Qψj satisfies

�̇(ν0,Qψj ) = ḟT(ν0)�̇(θ0,Pψj ) (3.8)

and hence the corresponding influence function �̃(ν0,Qψj ) satisfies

�̃(ν0,Qψj ) =
(
ḟT(ν0)I(θ0,Pψj )ḟ(ν0)

)−1

ḟT(ν0)�̇(θ0,Pψj ). (3.9)

Let ν̂n be a locally regular estimator of ν at P0 within the regular semiparamet-
ric model Q. By the Convolution Theorem for regular parametric models the
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convergence ⎛
⎜⎜⎝
√
n

(
ν̂n − ν0 − 1

n

n∑
i=1

�̃(Xi; ν0,Qψj )

)
1√
n

n∑
i=1

�̃(Xi; ν0,Qψj )

⎞
⎟⎟⎠→P0

(
RQ,j

ZQ,j

)
(3.10)

holds with the k-vectors RQ,j and ZQ,j independent and ZQ,j normal with

mean 0 and covariance matrix I−1(θ0,Qψj ). By the convergence of �̇(θ0,Pψj ) to

�̇(θ0, G0,P) in Lk
2(P0), the influence functions from (3.9) converge in Ld

2(P0) to

�̃(ν0, G0,Q) =
(
ḟT(ν0)I(θ0, G0,P)ḟ(ν0)

)−1

ḟT(ν0)�̇(θ0, G0,P)

=
(
ḟT(ν0)I(θ0, G0,P)ḟ(ν0)

)−1

ḟT(ν0)I(θ0, G0,P)�̃(θ0, G0,P) (3.11)

and the argument leading to (3.5) yields the convolution theorem⎛
⎜⎜⎝
√
n

(
ν̂n − ν0 − 1

n

n∑
i=1

�̃(Xi; ν0, G0,Q)

)
1√
n

n∑
i=1

�̃(Xi; ν0, G0,Q)

⎞
⎟⎟⎠→P0

(
RQ
ZQ

)
(3.12)

with RQ and ZQ independent. Note that ZQ has a normal distribution with
mean 0 and covariance matrix

I−1(ν0, G0,Q) =
(
ḟT(ν0)I(θ0, G0,P)ḟ(ν0)

)−1

. (3.13)

Under an additional condition on f(·) we shall construct an estimator ν̂n of ν

based on θ̂n for which RQ is degenerate. This construction of ν̂n will be given
in the next section together with a proof of its efficiency, and this will complete
the proof of our main result formulated as follows.

Theorem 3.1. Let P from (1.1) be a regular semiparametric model with P0 =
Pθ0,G0 ∈ P , θ0 = f(ν0), and f(·) from (1.4) and (1.5) continuously differen-
tiable. Furthermore, let f(·) have an inverse on f(N) that is differentiable with
a bounded Jacobian. If there exists a least favorable sequence of regular paramet-
ric submodels Pψj and an asymptotically efficient estimator θ̂n of θ satisfying
(3.5) with RP = 0 a.s., then there exists a least favorable sequence of regular
parametric submodels Qψj of the restricted model Q from (1.6) and an asymp-
totically efficient estimator ν̂n of ν taking values in N , satisfying (3.12) with
RQ = 0 a.s., and attaining the asymptotic information bound (3.13).

Note that (3.11) and (3.12) with RQ = 0 a.s. imply the chain rule for score
functions as formulated in (1.7).

4. Efficient estimator of the parameter of interest

For many specific types of (semi)parametric problems methods to construct
efficient estimators have been devised. A general approach is upgrading a

√
n-

consistent estimator as in Sections 2.5 (the parametric case) and 7.8 (the general
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case) of [2]. A somewhat different upgrading approach is used in the following
construction.

Theorem 4.1. Consider the situation of Theorem 3.1, where θ̂n is an efficient
estimator of θ within the model P . If the symmetric positive definite k×k-matrix
În is a consistent estimator of I(θ,G,P) within P and ν̄n is a

√
n-consistent

estimator of ν within Q, then

ν̂n = ν̄n +
(
ḟT(ν̄n)Înḟ(ν̄n)

)−1

ḟT(ν̄n)În

[
θ̂n − f (ν̄n)

]
(4.1)

is efficient, i.e., it satisfies (3.12) with RQ = 0 a.s.

Proof. The continuity of ḟ(·) and the consistency of ν̄n and În imply that

K̂n =
(
ḟT(ν̄n)Înḟ(ν̄n)

)−1

ḟT(ν̄n)În (4.2)

converges in probability under P0 to

K0 =
(
ḟT(ν0)I(θ0, G0,P)ḟ(ν0)

)−1

ḟT(ν0)I(θ0, G0,P). (4.3)

This means that K̂n consistently estimates K0. In view of (4.1), (3.11), (3.3),
and (3.5) with RP = 0 we obtain

√
n

(
ν̂n − ν0 −

1

n

n∑
i=1

�̃(Xi; ν0, G0,Q)

)

=
√
n

(
ν̄n − ν0 + K̂n

[
θ̂n − f (ν̄n)

]
− 1

n

n∑
i=1

K0�̃(Xi; θ0, G0,P)

)

=
√
n
(
ν̄n − ν0 − K̂n [f (ν̄n)− f(ν0)]

)

+
[
K̂n −K0

] 1√
n

n∑
i=1

�̃(Xi; θ0, G0,P) + op(1). (4.4)

By the consistency of K̂n the second term at the right hand side of (4.4) con-
verges to 0 in probability under P0 in view of the central limit theorem. Because
f (ν̄n) = f(ν0)+ḟ(ν0) (ν̄n − ν0)+op (ν̄n − ν0) holds andK0ḟ(ν0) equals the d×d
identity matrix, the first part of the right hand side of (4.4) also converges to 0
in probability under P0. �

To prove Theorem 3.1 with the help of Theorem 4.1 we will construct a√
n-consistent estimator ν̄n of ν and subsequently a consistent estimator În of

I(θ,G,P). Let ‖ · ‖ be a Euclidean norm on R
k. We choose ν̄n in such a way

that

‖ f (ν̄n)− θ̂n ‖≤ inf
ν∈N

‖ f(ν)− θ̂n ‖ +
1

n
(4.5)
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holds. Of course, if the infimum is attained, we choose ν̄n as the minimizer. There
are many numerical optimization techniques that will yield a ν̄n satisfying (4.5).

By the triangle inequality and the
√
n-consistency of θ̂n we obtain

‖ f(ν̄n)− f(ν0) ‖≤ inf
ν∈N

‖ f(ν)− θ̂n ‖ +
1

n
+ ‖ f(ν0)− θ̂n ‖

≤ 2 ‖ θ̂n − f(ν0) ‖ +
1

n
= Op

(
1√
n

)
. (4.6)

The assumption from Theorem 3.1 that f(·) has an inverse on f(N) that is
differentiable with a bounded Jacobian, suffices to conclude that (4.6) guarantees√
n-consistency of ν̄n.
In regular parametric models without nuisance parameters any consistent

estimator of θ yields a consistent estimator of the Fisher information matrix
I(θ,P) = I(θ,G,P) by substitution. Typically, in regular semiparametric mod-
els the construction of an efficient estimator is accompanied by an estima-
tor of the efficient influence function, which can be simply transformed into
a consistent estimator of the Fisher information matrix. Nevertheless, in or-
der to formally complete the proof of Theorem 3.1 we shall construct a con-
sistent estimator of the Fisher information matrix based on the given effi-
cient estimation method θ̂n alone, although this estimator will probably have
little practical value. In constructing this estimator we split the sample in
blocks as follows. Let (kn), (�n), and (mn) be sequences of integers such that
kn = �nmn, kn/n → κ, 0 < κ < 1, and �n → ∞,mn → ∞ hold as n → ∞. Such

sequences of integers exist. For j = 1, . . . , �n let θ̂n,j be the efficient estimator

of θ based on the observations X(j−1)mn+1, . . . , Xjmn and θ̂n,0 be the efficient
estimator of θ based on the remaining observations Xkn+1, . . . , Xn. Consider
the “empirical” characteristic function

φ̂n(t) =
1

�n

�n∑
j=1

exp
{
it
√
mn

(
θ̂n,j − θ̂n,0

)}
, t ∈ R

k, (4.7)

which we rewrite as

φ̂n(t) = exp
{
−it

√
mn

(
θ̂n,0 − θ0

)} 1

�n

�n∑
j=1

exp
{
it
√
mn

(
θ̂n,j − θ0

)}

= exp
{
−it

√
mn

(
θ̂n,0 − θ0

)}
φ̃n(t). (4.8)

In view of mn/(n − kn) → 0 and (3.5) with RP = 0 a.s. we see that the first
factor at the right hand side of (4.8) converges to 1 as n → ∞. The efficiency

of θ̂n in (3.5) with RP = 0 a.s. also implies

E
(
φ̃n(t)

)
= E

(
exp
{
it
√
mn

(
θ̂n,1 − θ0

)})
→ E (exp {itZP}) (4.9)
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as n → ∞, with ZP normally distributed with mean 0 and covariance matrix
I−1(θ0, G0,P). Some computation shows

E

(∣∣∣φ̃n(t)− E
(
φ̃n(t)

)∣∣∣2)

=
1

�n

(
1−
∣∣∣E (exp{it√mn

(
θ̂n,1 − θ0

)})∣∣∣2) ≤ 1

�n
. (4.10)

It follows by Chebyshev’s inequality that φ̃n(t) and hence φ̂n(t) converges under
P0 = Pθ0,G0 to the characteristic function of ZP at t,

φ̂n(t) →P0 E (exp {itZP}) = exp
{
−1

2 t
T I−1(θ0, G0,P)t

}
. (4.11)

For every t ∈ R
k we obtain

− 2 log
(
�
(
φ̂n(t)

))
→P0 tT I−1(θ0, G0,P)t. (4.12)

Choosing k(k + 1)/2 appropriate values of t we may obtain from (4.12) an
estimator of I−1(θ0, G0,P) and hence of I(θ0, G0,P). Indeed, with t equal to the
unit vectors ui we obtain estimators of the diagonal elements of I−1(θ0, G0,P)
and an estimator of its (i, j) element is obtained via

log
(
�
(
φ̂n(ui)

))
+ log

(
�
(
φ̂n(uj)

))
− log

(
�
(
φ̂n(ui + uj)

))
.

When needed, the resulting estimator of I(θ0, G0,P) can be made positive def-
inite by changing appropriate components of it by an asymptotically negligible
amount, while the symmetry is maintained.

Under a mild uniform integrability condition it has been shown in [11], that

existence of an efficient estimator θ̂n of θ in P implies the existence of a consis-
tent and

√
n-unbiased estimator of the efficient influence function �̃(·; θ,G,P).

Basing this estimator on one half of the sample and taking the average of this
estimated efficient influence function at the observations from the other half of
the sample, we could have constructed another estimator of the efficient Fisher
information. However, this estimator would have been more involved, and, more-
over, it needs this extra uniformity condition.

With the help of Theorem 4.1, the estimator ν̄n of ν from (4.5), and the
construction via (4.12) of an estimator În of the efficient Fisher information we
have completed our construction of an efficient estimator ν̂n as in (4.1) of ν.
This estimator can be turned into an efficient estimator of θ = f(ν) within the
model Q from (1.6) by

θ̃n = f(ν̂n) (4.13)

with efficient influence function

�̃(θ0, G0,Q) = ḟ(ν0)�̃(ν0, G0,Q)

= ḟ(ν0)
(
ḟT(ν0)I(θ0, G0,P)ḟ(ν0)

)−1

ḟT(ν0)�̇(θ0, G0,P) (4.14)
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= ḟ(ν0)
(
ḟT(ν0)I(θ0, G0,P)ḟ(ν0)

)−1

ḟT(ν0)I(θ0, G0,P)�̃(θ0, G0,P)

and asymptotic information bound

I−1(θ0, G0,Q) = ḟ(ν0)
(
ḟT(ν0)I(θ0, G0,P)ḟ(ν0)

)−1

ḟT(ν0). (4.15)

Indeed, according to Section 2.3 of [2], θ̃n is efficient for estimation of θ under
the additional information θ = f(ν).

Remark 4.1. If f(·) is a linear function, i.e., θ = Lν +α holds with the k× d-
matrix L of maximum rank d, then

ν̄n = (LTL)−1LT (θ̂n − α) (4.16)

attains the infimum at the right hand side of (4.5). So, the estimator (4.1)
becomes

ν̂n =
(
LT ÎnL

)−1

LT În

[
θ̂n − α

]
(4.17)

with efficient influence function (3.11) and asymptotic information bound (3.13)
with ḟ(ν0) = L, and the estimator from (4.13)

θ̃n = L
(
LT ÎnL

)−1

LT În

[
θ̂n − α

]
+ α. (4.18)

Note that θ̃n is the projection of θ̂n on the flat {θ ∈ R
k : θ = Lν + α, ν ∈

R
d} under the inner product determined by În (cf. Appendix A) and that the

covariance matrix of its limit distribution equals the asymptotic information
bound

I−1(θ0, G0,Q) = L
(
LT I(θ0, G0,P)L

)−1
LT . (4.19)

Another way to describe this submodelQ with θ = Lν+α is by linear restrictions

Q = {PLν+α : ν ∈ N,G ∈ G} =
{
Pθ,G : RT θ = β, θ ∈ Θ, G ∈ G

}
, (4.20)

where RTα = β holds and the k × d-matrix L and the k × (k − d)-matrix R
are matching such that the columns of L are orthogonal to those of R and the
k × k-matrix (LR) is of rank k. Note that the open subset N of Rd determines
the open subset Θ of Rk and vice versa. See [4], [18], [14], and [10] for some
examples of estimation under linear restrictions.

In terms of the restrictions described by R and β the efficient estimator θ̃n
of θ from(4.18) within the submodel Q can be rewritten as

θ̃n = θ̂n − Î−1
n R

(
RT Î−1

n R
)−1 (

RT θ̂n − β
)
, (4.21)

with asymptotic information bound

L(LT IL)−1LT = I−1 − I−1R(RT I−1R)−1RT I−1, I = I(θ0, G0,P), (4.22)

as will be proved in Appendix A.
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5. Examples

In this section we present five examples, which illustrate our construction of
(semi)parametrically efficient estimators. We shall discuss location-scale, Gaus-
sian copula, and semiparametric regression models, and parametric models un-
der linear restrictions.

Example 5.1. Multivariate normal with common mean
Let G be the collection of nonsingular k × k-covariance matrices and let the

parametric starting model be the collection of nondegenerate normal distribu-
tions with mean vector θ and covariance matrix Σ,

P =
{
Pθ,Σ : θ ∈ R

k, Σ ∈ G
}
. (5.1)

Efficient estimators of θ and Σ are the sample mean X̄n = n−1
∑n

i=1 Xi and

the sample covariance matrix Σ̂n = (n − 1)−1
∑n

i=1(Xi − X̄n)(Xi − X̄n)
T , re-

spectively. Note that X̄n attains the finite sample Cramér-Rao bound and the
asymptotic information bound with I(θ,Σ,P) = Σ−1.

The parametric submodel we consider is

Q = {P1kμ,Σ : μ ∈ R, Σ ∈ G} . (5.2)

In view of (4.17) and (3.13)

μ̂n =
(
1T
k Σ̂

−1
n 1k

)−1

1T
k Σ̂

−1
n X̄n (5.3)

is an efficient estimator of μ within Q that attains the asymptotic lower bound(
1T
kΣ

−11k

)−1
. In case the covariance matrix Σ is diagonal with its variances

denoted by σ2
1 , . . . , σ

2
k, we are dealing with the Graybill-Deal model as presented

on page 88 of [20]. With X̄i,n = 1
n

∑n
j=1 Xj,i, S

2
i,n = 1

n

∑n
j=1(Xj,i − X̄i,n)

2, and

Σ̂n = diag(S2
1,n, . . . , S

2
k,n) we obtain the Graybill-Deal estimator

μ̂n =

∑k
i=1 X̄i,n/S

2
i,n∑k

i=1 1/S
2
i,n

(5.4)

with asymptotic lower bound
(
1T
kΣ

−11k

)−1
= 1/

∑k
i=1 1/σ

2
i .

Example 5.2. Coefficient of variation known
Let g(·) be an absolutely continuous density on (R,B) with mean 0, vari-

ance 1, and derivative g′(·), such that
∫
[1 + x2](g′/g(x))2g(x)dx is finite. Con-

sider the location-scale family corresponding to g(·). Let there be given efficient
estimators μ̄n and σ̄n of μ and σ, respectively, based on X1, . . . , Xn, which
are i.i.d. with density σ−1g((· − μ)/σ). By Iij we denote the element in the
ithe row and jth column of the matrix I = σ2I(θ,G,P), where the Fisher
information matrix I(θ,G,P) is as defined in (3.3) with θ = (μ, σ)T . Some
computation shows I11 =

∫
(g′/g)2g, I12 = I21 =

∫
x(g′/g(x))2g(x)dx, and

I22 =
∫
[xg′/g(x) + 1]2g(x)dx exist and are finite; cf. Section I.2.3 of [6].
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We consider the submodel with the coefficient of variation known to be equal
to a given constant c = σ/μ and with ν = μ the parameter of interest. According
to Theorem 4.1 the estimator ν̂n = μ̂n of μ from (4.1) with ν̄n = μ̄n and

θ̂n = (μ̄n, σ̄n)
T is efficient and some computation shows

μ̂n =
(
I11 + 2cI12 + c2I22

)−1
[(I11 + cI12) μ̄n + (I12 + cI22) σ̄n] . (5.5)

In case the density g(·) is symmetric around 0, the Fisher information matrix
is diagonal and μ̂n from (5.5) becomes

μ̂n =
(
I11 + c2I22

)−1
[I11μ̄n + cI22σ̄n] . (5.6)

In the normal case with g(·) the standard normal density μ̂n reduces to

μ̂n = (1 + c2)−1 [μ̄n + 2cσ̄n] (5.7)

with μ̄n and σ̄n equal to e.g. the sample mean and the sample standard devia-
tion, respectively; cf. [8], [5], and [9].

Example 5.3. Gaussian copula models
Let

X1 = (X1,1, . . . , X1,m)T , . . . ,Xn = (Xn,1, . . . , Xn,m)T

be i.i.d. copies of X = (X1, . . . , Xm)T . For i = 1, . . . ,m, the marginal distribu-
tion function of Xi is continuous and will be denoted by Fi. It is assumed that
(Φ−1(F1(X1)), . . . ,Φ

−1(Fm(Xm)))T has an m-dimensional normal distribution
with mean 0 and positive definite correlation matrix C(θ), where Φ denotes the
one-dimensional standard normal distribution function. Here the parameter of
interest θ is the vector in R

m(m−1)/2 that summarizes all correlation coefficients
ρrs, 1 ≤ r < s ≤ m. We will set this general Gaussian copula model as our
semiparametric starting model P , i.e.,

P = {Pθ,G : θ = (ρ12, . . . , ρ(m−1)m)T , G = (F1(·), . . . , Fm(·)) ∈ G}. (5.8)

The unknown continuous marginal distributions are the nuisance parameters
collected as G ∈ G.

Theorem 3.1 of [13] shows that the normal scores rank correlation coeffi-
cient is semiparametrically efficient in P for the 2-dimensional case with normal
marginals with unknown variances constituting a least favorable parametric
submodel. As [7] explains at the end of its Section 1 and in its Section 4, its
Theorem 4.1 proves that normal marginals with unknown, possibly unequal
variances constitute a least favorable parametric submodel, also for the general
m-dimensional case. Since the maximum likelihood estimators are efficient for
the parameters of a multivariate normal distribution, the sample correlation
coefficients are efficient for estimation of the correlation coefficients based on
multivariate normal observations. But each sample correlation coefficient and
hence its efficient influence function involve only two components of the multi-
variate normal observations. Apparently, the other components of the multivari-
ate normal observations carry no information about the value of the respective
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correlation coefficient. Effectively, for each correlation coefficient we are in the
2-dimensional case and invoking again Theorem 3.1 of [13] we see that also in
the general m-dimensional case the normal scores rank correlation coefficients
are semiparametrically efficient. They are defined as

ρ̂(n)rs =

1
n

n∑
j=1

Φ−1
(

n
n+1F

(n)
r (Xj,r)

)
Φ−1

(
n

n+1F
(n)
s (Xj,s)

)
1
n

n∑
j=1

[
Φ−1

(
j

n+1

)]2 (5.9)

with F
(n)
r and F

(n)
s being the marginal empirical distributions of Fr and Fs,

respectively, 1 ≤ r < s ≤ m. The Van der Waerden or normal scores rank

correlation coefficient ρ̂
(n)
rs from (5.9) is a semiparametrically efficient estimator

of ρrs with efficient influence function

�̃ρrs(Xr, Xs) = Φ−1 (Fr(Xr)) Φ
−1 (Fs(Xs)) (5.10)

− 1
2ρrs

{[
Φ−1 (Fr(Xr))

]2
+
[
Φ−1 (Fs(Xs))

]2}
.

This means that

θ̂n = (ρ̂
(n)
12 , . . . , ρ̂

(n)
(m−1)m)T (5.11)

efficiently estimates θ with efficient influence function

�̃(X; θ,G,P) = (�̃ρ12(X1, X2), . . . , �̃ρ(m−1)m
(Xm−1, Xm))T . (5.12)

Subexample 5.3.1. Exchangeable Gaussian copula
The exchangeable m-variate Gaussian copula model

Q = {P1kρ,G : ρ ∈ (−1/(m− 1), 1), G ∈ G} ⊂ P (5.13)

is a submodel of the Gaussian copula model P with a one-dimensional parameter
of interest ν = ρ. In this submodel all correlation coefficients have the same value
ρ. So, θ = 1kρ with 1k indicating the vector of ones of dimension k = m(m−1)/2.
In order to construct an efficient estimator of ρ within Q along the lines of
Section 4, in particular Remark 4.1, we first apply (4.16) with α = 0 and L = 1k

to obtain the (natural)
√
n-consistent estimator

ρ̄n = ν̄n =
1

k

m−1∑
r=1

m∑
s=r+1

ρ̂(n)rs . (5.14)

For θ = 1kρ we get by simple but tedious calculations (see Appendix B)

E�̃ρrs �̃ρtu =

⎧⎪⎨
⎪⎩
(1− ρ2)2 if |{r, s} ∩ {t, u}| = 2,
1
2 (1− ρ)2ρ(2 + 3ρ) if |{r, s} ∩ {t, u}| = 1,

2(1− ρ)2ρ2 if |{r, s} ∩ {t, u}| = 0.

(5.15)
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It makes sense to estimate I(1k, G,P) by substituting ρ̄n for ρ in (5.15), to
compute the inverse of the resulting matrix, and to choose this matrix as the
estimator În. To this end, we note that for every pair {r, s}, 1 ≤ r = s ≤
m, there are 2(m − 2) pairs of {t, u}’s having one element in common and
there are 1

2 (m − 2)(m − 3) pairs of {t, u}’s having no elements in common.
Hence, the sum of the components of each column vector of I−1(1kρ,G,P) is
(1−ρ)2(1+(m−1)ρ)2. Each matrix with the components of each column vector
adding to 1 has the property that the sum of all row vectors equals the vector
with all components equal to 1, and hence the components of each column vector
of its inverse also add up to 1. This implies

1T
k În = (1− ρ̄n)

−2
(1 + (m− 1)ρ̄n)

−2
1T
k

and hence by (4.17)

ρ̂n =
(
1T
k În1k

)−1

1T
k Înθ̂n =

1

k
1T
k θ̂n =

(
m

2

)−1 m−1∑
r=1

m∑
s=r+1

ρ̂(n)rs = ρ̄n (5.16)

attains the asymptotic information bound (cf. (3.13))

(
1T
k I (1kρ,G,P)1k

)−1
=

(
m

2

)−1

(1− ρ)2(1 + (m− 1)ρ)2. (5.17)

[7] proved the efficiency of the pseudo-likelihood estimator for ρ in dimension
m = 4. [17] extended this result to general m and presented the efficient lower
bounds for m = 3 and m = 4 in its Example 5.3. However, its maximum pseudo-
likelihood estimator is not as explicit as our (5.16).

Subexample 5.3.2. Four-dimensional circular Gaussian copula
A particular, one-dimensional parameter type of four-dimensional circular

Gaussian copula model has been studied in [7] and [17]. It is defined by its
correlation matrix ⎛

⎜⎜⎝
1 ρ ρ2 ρ
ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ ρ2 ρ 1

⎞
⎟⎟⎠ . (5.18)

Our semiparametric starting model P is the same as in (5.8) with m = 4, but
with the components of θ rearranged as follows

θ = (ρ12 , ρ14 , ρ23 , ρ34 , ρ13 , ρ24)
T .

Now, with f(ρ) = (ρ , ρ , ρ , ρ , ρ2 , ρ2)T the present circular Gaussian
submodel Q may be written as

Q = {Pf(ρ),G : ρ ∈ (−1
3 , 1) , G ∈ G}.

In order to construct an efficient estimator of ρ within Q along the lines of
Theorem 4.1, we propose as a

√
n-consistent estimator of ρ

ρ̄n = 2
3 ρ̄n,1 +

1
3 sign (ρ̄n,1) ρ̄n,2,
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ρ̄n,1 = 1
4

(
ρ̂
(n)
12 + ρ̂

(n)
14 + ρ̂

(n)
23 + ρ̂

(n)
34

)
, ρ̄n,2 = 1

2

(√
ρ̂
(n)
13 +

√
ρ̂
(n)
24

)
.(5.19)

As in (5.15) we get by simple but tedious calculations (see Appendix B)

I−1(f(ρ), G,P) = 1
2

(
1− ρ2

)2
(5.20)

⎛
⎜⎜⎜⎜⎜⎜⎝

2 ρ2 ρ2 2ρ2 ρ
(
2 + ρ2

)
ρ
(
2 + ρ2

)
ρ2 2 2ρ2 ρ2 ρ

(
2 + ρ2

)
ρ
(
2 + ρ2

)
ρ2 2ρ2 2 ρ2 ρ

(
2 + ρ2

)
ρ
(
2 + ρ2

)
2ρ2 ρ2 ρ2 2 ρ

(
2 + ρ2

)
ρ
(
2 + ρ2

)
ρ
(
2 + ρ2

)
ρ
(
2 + ρ2

)
ρ
(
2 + ρ2

)
ρ
(
2 + ρ2

)
2
(
1 + ρ2

)2
4ρ2

ρ
(
2 + ρ2

)
ρ
(
2 + ρ2

)
ρ
(
2 + ρ2

)
ρ
(
2 + ρ2

)
4ρ2 2

(
1 + ρ2

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which has inverse
I(f(ρ), G,P) = 1

2

(
1− ρ2

)−4
(5.21)⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ρ4 + 2 3ρ2 3ρ2 ρ4 + 2ρ2 −
(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
3ρ2 ρ4 + 2 ρ4 + 2ρ2 3ρ2 −

(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
3ρ2 ρ4 + 2ρ2 ρ4 + 2 3ρ2 −

(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
ρ4 + 2ρ2 3ρ2 3ρ2 ρ4 + 2 −

(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
2 ρ6+ρ4+1

ρ4+1
2 ρ6+2ρ2

ρ4+1

−
(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
−
(
ρ3 + 2ρ

)
2 ρ6+2ρ2

ρ4+1
2 ρ6+ρ4+1

ρ4+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Substituting ρ̄n into (5.21) we obtain a
√
n-consistent estimator of I(f(ρ), G,P).

In view of ḟ(ρ) = (1, 1, 1, 1, 2ρ, 2ρ)T we have

ḟT (ρ)I(f(ρ), G,P) =
(
1− ρ2

)−3 (
1 + ρ2, 1 + ρ2, 1 + ρ2, 1 + ρ2,−2ρ,−2ρ

)
.

Consequently the asymptotic lower bound for estimation of ρ within Q equals[
ḟ(ρ)T I(f(ρ), G,P)ḟ(ρ)

]−1

= 1
4

(
1− ρ2

)2
. (5.22)

Substituting ρ̄n for ρ we obtain as the efficient estimator from Theorem 4.1

ρ̂n = ρ̄n +
1 + ρ̄2n
1− ρ̄2n

(ρ̄n,1 − ρ̄n)−
ρ̄n

1− ρ̄2n

(
1
2

(
ρ̂
(n)
13 + ρ̂

(n)
24

)
− ρ̄2n

)
. (5.23)

[7] has shown that the pseudo maximum likelihood estimator is not efficient
in this case. [17] has established the asymptotic lower bound (5.22) and has
constructed an alternative, efficient, one-step updating estimator suggesting the
pseudo maximum likelihood estimator as the preliminary estimator.

Example 5.4. Partial spline linear regression
Here the observations are realizations of i.i.d. copies of the random vector

X = (Y, ZT , UT )T with Y , Z, and U 1-dimensional, k-dimensional, and p-
dimensional random vectors with the structure

Y = θTZ + ψ(U) + ε, (5.24)
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where the measurement error ε is independent of Z and U , has mean 0, finite
variance, and finite Fisher information for location, and where ψ(·) is a real
valued function on R

p. [16] calls this partially linear additive regression, [2]
mentions it as partial spline regression, whereas [3] is talking about the partial
smoothing spline model. Under the regularity conditions of its Theorem 8.1
[16] presents an efficient estimator of θ and a consistent estimator of I(θ,G,P).
Consequently our Theorem 4.1 may be applied directly in order to obtain an
efficient estimator of ν in appropriate submodels with θ = f(ν) without our
construction of an estimator of I(θ,G,P) via characteristic functions. Note that
for submodels with θ restricted to a linear subspace, θ = Lν say, our approach
is not needed, since the reparametrization Y = νTLTZ + ψ(U) + ε brings the
estimation problem back to its original (5.24).

Example 5.5. Restricted maximum likelihood estimator
As mentioned in the Introduction, most papers on estimation in constrained

parametric models focus on constrained (or restricted) maximum likelihood es-
timation implemented via Lagrange multipliers; cf. [1]. Maximum likelihood
estimation of the generalized linear model under linear restrictions on the pa-
rameters is done in [14] via an iterative procedure using a penalty function.
[10] introduces the restricted EM algorithm for maximum likelihood estimation

under linear restrictions. Our approach as described in Remark 4.1 with θ̂n a(n
unrestricted) maximum likelihood estimator avoids such iterative procedures.

Appendix A: Proof of bound subject to linear restriction

In this appendix proofs will be presented of (4.21) and (4.22).
Since În has been chosen to be symmetric and positive definite, xT Îny, x, y ∈

R
k, is an inner product on R

k. Define the k × k-matrices Πn,L and Πn,R by

Πn,L = L
(
LT ÎnL

)−1

LT În,

Πn,R = Î−1
n R

(
RT Î−1

n R
)−1

RT . (A.1)

With the above inner product these matrices are projection matrices on the
linear subspaces spanned by the columns of L and Î−1

n R, respectively. Indeed,
Πn,LΠn,L = Πn,L, Πn,RΠn,R = Πn,R, (x−Πn,Lx)

T ÎnΠn,Lx = 0, x ∈ R
k, (y −

Πn,Ry)
T ÎnΠn,Ry = 0, y ∈ R

k, Πn,LLx = Lx, x ∈ R
d, and Πn,RÎ

−1
n Ry =

Î−1
n Ry, y ∈ R

k−d hold. The linear subspaces spanned by the columns of L and
Î−1
n R have dimensions d and k − d, respectively, since the matrices (L,R) and
În are nonsingular. Moreover, these linear subspaces are orthogonal in view of
LT ÎnÎ

−1
n R = LTR = 0. This implies

Πn,Lx+Πn,Rx = x, x ∈ R
k. (A.2)

Combining (A.1), (A.2), and (4.18) we obtain (4.21) and, by the consistency of
În, (4.22).
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Appendix B: Computation of bound in Example 5.3

We will present the computational details for (5.15) and (5.20). Since our com-
putations will be based on fourth moments of multivariate normal random vari-
ables, we consider

Z =

⎛
⎜⎜⎝
Za

Zb

Zc

Zd

⎞
⎟⎟⎠ ∼ N

⎛
⎜⎜⎝
⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 ρab ρac ρad
ρba 1 ρbc ρbd
ρca ρcb 1 ρcd
ρda ρdb ρdc 1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

The following fourth moments of Z can be obtained by straightforward compu-
tations:

• E(Z4
a) = 3

• E(Z3
aZb) = 3ρab

• E(Z2
aZ

2
b ) = 1 + 2ρ2ab

• E(Z2
aZbZc) = ρbc + 2ρabρac

• E(ZaZbZcZd) = ρabρcd + ρacρbd + ρadρbc.

For every i, j = 1, . . . ,
(
n
2

)
letMij be the element in the i-th row and j-th column

of the efficient lower bound I−1(θ,G,P). Because of θi = ρab, θj = ρcd for some
a, b, c, and d, we have

Mij = E
(
ZaZb − 1

2ρab
[
Z2
a + Z2

b

]) (
ZcZd − 1

2ρcd
[
Z2
c + Z2

d

])
.

We have three cases:

• |{a, b} ∩ {c, d}| = 2

Mii = E
(
ZaZb − 1

2ρab
[
Z2
a + Z2

b

])2
= E

(
Z2
aZ

2
b

)
− ρabE

(
Z3
aZb + Z3

bZa

)
+ 1

4ρ
2
abE

(
Z4
a + 2Z2

aZ
2
b + Z4

b

)
=
(
1 + 2ρ2ab

)
− ρab (3ρab + 3ρab) +

1
4ρ

2
ab

(
3 + 2

[
1 + 2ρ2ab

]
+ 3
)

=
(
1− ρ2ab

)2
• |{a, b} ∩ {c, d}| = 1 (without loss of generality assume d = a)

Mij = E
(
ZaZb − 1

2ρab
[
Z2
a + Z2

b

]) (
ZaZc − 1

2ρac
[
Z2
a + Z2

c

])
= E

(
Z2
aZbZc

)
− 1

2ρabE
(
Z3
aZc + Z2

bZaZc

)
−1

2ρacE
(
Z3
aZb + Z2

cZaZb

)
+1

4ρabρacE
(
Z4
a + Z2

aZ
2
b + Z2

aZ
2
c + Z2

bZ
2
c

)
= (ρbc + 2ρabρac)− 1

2ρab (3ρac + [ρac + 2ρabρbc])

−1
2ρac (3ρab + [ρab + 2ρacρbc])

+1
4ρabρac

(
3 +
[
1 + 2ρ2ab

]
+
[
1 + 2ρ2ac

]
+
[
1 + 2ρ2bc

])
= 1

2

(
1− ρ2ab − ρ2ac

)
(2ρbc − ρabρac) +

1
2ρabρacρ

2
bc
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• |{a, b} ∩ {c, d}| = 0

Mij = E
(
ZaZb − 1

2ρab
[
Z2
a + Z2

b

]) (
ZcZd − 1

2ρcd
[
Z2
c + Z2

d

])
= E (ZaZbZcZd)− 1

2ρabE
(
Z2
aZcZd + Z2

bZcZd

)
−1

2ρcdE
(
Z2
cZaZb + Z2

dZaZb

)
+1

4ρabρcdE
(
Z2
aZ

2
c + Z2

bZ
2
c + Z2

aZ
2
d + Z2

bZ
2
d

)
= ρabρcd + ρacρbd + ρadρbc − 1

2ρab ([ρcd + 2ρacρad] + [ρcd + 2ρbcρbd])

−1
2ρcd ([ρab + 2ρacρbc] + [ρab + 2ρadρbd])

+1
4ρabρcd

([
1 + 2ρ2ac

]
+
[
1 + 2ρ2bc

]
+
[
1 + 2ρ2ad

]
+
[
1 + 2ρ2bd

])
= ρacρbd + ρadρbc − (ρabρacρad + ρabρbcρbd + ρacρbcρcd + ρadρbdρcd)

+1
2ρabρcd

(
ρ2ac + ρ2bc + ρ2ad + ρ2bd

)
Finally, substitution of the correlation structures in Subexample 5.3.1 and
Subexample 5.3.2 gives (5.15) and (5.20), respectively.
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