Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 8, Number 2 (2014), 2207-2241.
False discovery rate control under Archimedean copula
Taras Bodnar and Thorsten Dickhaus
Full-text: Open access
Abstract
We are concerned with the false discovery rate (FDR) of the linear step-up test $\varphi^{LSU}$ considered by Benjamini and Hochberg (1995). It is well known that $\varphi^{LSU}$ controls the FDR at level $m_{0}q/m$ if the joint distribution of $p$-values is multivariate totally positive of order $2$. In this, $m$ denotes the total number of hypotheses, $m_{0}$ the number of true null hypotheses, and $q$ the nominal FDR level. Under the assumption of an Archimedean $p$-value copula with completely monotone generator, we derive a sharper upper bound for the FDR of $\varphi^{LSU}$ as well as a non-trivial lower bound. Application of the sharper upper bound to parametric subclasses of Archimedean $p$-value copulae allows us to increase the power of $\varphi^{LSU}$ by pre-estimating the copula parameter and adjusting $q$. Based on the lower bound, a sufficient condition is obtained under which the FDR of $\varphi^{LSU}$ is exactly equal to $m_{0}q/m$, as in the case of stochastically independent $p$-values. Finally, we deal with high-dimensional multiple test problems with exchangeable test statistics by drawing a connection between infinite sequences of exchangeable $p$-values and Archimedean copulae with completely monotone generators. Our theoretical results are applied to important copula families, including Clayton copulae and Gumbel-Hougaard copulae.
Article information
Source
Electron. J. Statist., Volume 8, Number 2 (2014), 2207-2241.
Dates
First available in Project Euclid: 29 October 2014
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1414588192
Digital Object Identifier
doi:10.1214/14-EJS950
Mathematical Reviews number (MathSciNet)
MR3273624
Zentralblatt MATH identifier
1305.62269
Subjects
Primary: 62J15: Paired and multiple comparisons 62F05: Asymptotic properties of tests
Secondary: 62F03: Hypothesis testing
Keywords
Clayton copula exchangeability Gumbel- Hougaard copula linear step-up test multiple hypotheses testing $p$-values
Citation
Bodnar, Taras; Dickhaus, Thorsten. False discovery rate control under Archimedean copula. Electron. J. Statist. 8 (2014), no. 2, 2207--2241. doi:10.1214/14-EJS950. https://projecteuclid.org/euclid.ejs/1414588192
References
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing., J. R. Stat. Soc. Ser. B Stat. Methodol. 57 289–300.Mathematical Reviews (MathSciNet): MR1325392
- Benjamini, Y. and Liu, W. (1999). A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence., J. Stat. Plann. Inference 82 163–170.Mathematical Reviews (MathSciNet): MR1736441
Digital Object Identifier: doi:10.1016/S0378-3758(99)00040-3 - Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency., Ann. Stat. 29 1165–1188.Mathematical Reviews (MathSciNet): MR1869245
Digital Object Identifier: doi:10.1214/aos/1013699998
Project Euclid: euclid.aos/1013699998 - Blanchard, G. and Roquain, E. (2008). Two simple sufficient conditions for FDR control., Electron. J. Statist. 2 963–992.Mathematical Reviews (MathSciNet): MR2448601
Digital Object Identifier: doi:10.1214/08-EJS180
Project Euclid: euclid.ejs/1224078069 - Blanchard, G. and Roquain, E. (2009). Adaptive false discovery rate control under independence and dependence., Journal of Machine Learning Research 10 2837–2871.Mathematical Reviews (MathSciNet): MR2579914
- Blanchard, G., Dickhaus, T., Roquain, E. and Villers, F. (2014). On least favorable configurations for step-up-down tests., Statistica Sinica 24 1–23.Mathematical Reviews (MathSciNet): MR3184590
- Cai, T. T. and Jin, J. (2010). Optimal rates of convergence for estimating the null density and proportion of nonnull effects in large-scale multiple testing., Ann. Stat. 38 100–145.Mathematical Reviews (MathSciNet): MR2589318
Digital Object Identifier: doi:10.1214/09-AOS696
Project Euclid: euclid.aos/1262271611 - Cerqueti, R., Costantini, M. and Lupi, C. (2012). A copula-based analysis of false discovery rate control under dependence assumptions. Economics & Statistics Discussion Paper No. 065/12, Università degli Studi del Molise, Dipartimento di Scienze Economiche, Gestionali e Sociali, (SEGeS).
- Chambers, J. M., Mallows, C. L. and Stuck, B. W. (1976). A method for simulating stable random variables., J. Am. Stat. Assoc. 71 340–344.Mathematical Reviews (MathSciNet): MR415982
Digital Object Identifier: doi:10.1080/01621459.1976.10480344 - Delattre, S. and Roquain, E. (2011). On the false discovery proportion convergence under Gaussian equi-correlation., Stat. Probab. Lett. 81 111–115.Mathematical Reviews (MathSciNet): MR2740072
- Dickhaus, T. (2013). Randomized $p$-values for multiple testing of composite null hypotheses., J. Stat. Plann. Inference 143 1968–1979.Mathematical Reviews (MathSciNet): MR3095086
Digital Object Identifier: doi:10.1016/j.jspi.2013.06.011 - Dickhaus, T. (2014)., Simultaneous Statistical Inference with Applications in the Life Sciences. Springer-Verlag Berlin Heidelberg.Mathematical Reviews (MathSciNet): MR3184277
- Dickhaus, T. and Gierl, J. (2013). Simultaneous test procedures in terms of p-value copulae., Proceedings on the 2nd Annual International Conference on Computational Mathematics, Computational Geometry & Statistics (CMCGS 2013) 2 75–80. Global Science and Technology Forum (GSTF).
- Dudoit, S. and van der Laan, M. J. (2008)., Multiple Testing Procedures with Applications to Genomics. Springer Series in Statistics. New York, NY: Springer.Mathematical Reviews (MathSciNet): MR2373771
- Fengler, M. R. and Okhrin, O. (2012). Realized Copula SFB 649 Discussion Paper No. 2012-034, Sonderforschungsbereich 649, Humboldt-Universität zu Berlin, Germany. available at, http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2012-034.pdf.
- Finner, H., Dickhaus, T. and Roters, M. (2007). Dependency and false discovery rate: Asymptotics., Ann. Stat. 35 1432–1455.Mathematical Reviews (MathSciNet): MR2351092
Digital Object Identifier: doi:10.1214/009053607000000046
Project Euclid: euclid.aos/1188405617 - Finner, H., Dickhaus, T. and Roters, M. (2009). On the false discovery rate and an asymptotically optimal rejection curve., Ann. Stat. 37 596–618.Mathematical Reviews (MathSciNet): MR2502644
Digital Object Identifier: doi:10.1214/07-AOS569
Project Euclid: euclid.aos/1236693143 - Finner, H., Gontscharuk, V. and Dickhaus, T. (2012). False discovery rate control of step-up-down tests with special emphasis on the asymptotically optimal rejection curve., Scandinavian Journal of Statistics 39 382–397.Mathematical Reviews (MathSciNet): MR2927031
Digital Object Identifier: doi:10.1111/j.1467-9469.2012.00791.x - Finner, H. and Roters, M. (1998). Asymptotic comparison of step-down and step-up multiple test procedures based on exchangeable test statistics., Ann. Stat. 26 505–524.Mathematical Reviews (MathSciNet): MR1626043
Digital Object Identifier: doi:10.1214/aos/1028144847
Project Euclid: euclid.aos/1028144847 - Gavrilov, Y., Benjamini, Y. and Sarkar, S. K. (2009). An adaptive step-down procedure with proven FDR control under independence., Ann. Stat. 37 619–629.Mathematical Reviews (MathSciNet): MR2502645
Digital Object Identifier: doi:10.1214/07-AOS586
Project Euclid: euclid.aos/1236693144 - Genest, C., Nešlehová, J. and Ben Ghorbal, N. (2011). Estimators based on Kendall’s tau in multivariate copula models., Aust. N. Z. J. Stat. 53 157–177.Mathematical Reviews (MathSciNet): MR2851720
- Genovese, C. and Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure., J. R. Stat. Soc., Ser. B, Stat. Methodol. 64 499–517.
- Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control., Ann. Stat. 32 1035–1061.Mathematical Reviews (MathSciNet): MR2065197
Digital Object Identifier: doi:10.1214/009053604000000283
Project Euclid: euclid.aos/1085408494 - Guo, W. and Rao, M. B. (2008). On control of the false discovery rate under no assumption of dependency., J. Stat. Plann. Inference 138 3176–3188.Mathematical Reviews (MathSciNet): MR2526229
Digital Object Identifier: doi:10.1016/j.jspi.2008.01.003 - Hofert, M., Mächler, M. and McNeil, A. J. (2012). Likelihood inference for Archimedean copulas in high dimensions under known margins., J. Multivariate Anal. 110 133–150.Mathematical Reviews (MathSciNet): MR2927514
Digital Object Identifier: doi:10.1016/j.jmva.2012.02.019 - Jin, J. and Cai, T. T. (2007). Estimating the null and the proportion of nonnull effects in large-scale multiple comparisons., J. Am. Stat. Assoc. 102 495–506.Mathematical Reviews (MathSciNet): MR2325113
Digital Object Identifier: doi:10.1198/016214507000000167 - Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models., J. Multivariate Anal. 94 401–419.Mathematical Reviews (MathSciNet): MR2167922
Digital Object Identifier: doi:10.1016/j.jmva.2004.06.003 - Kanter, M. (1975). Stable densities under change of scale and total variation inequalities., Ann. Probab. 3 697–707.
- Kingman, J. F. C. (1978). Uses of exchangeability., Ann. Probab. 6 183–197.
- Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions., J. Am. Stat. Assoc. 83 834–841.Mathematical Reviews (MathSciNet): MR963813
Digital Object Identifier: doi:10.1080/01621459.1988.10478671 - McNeil, A. J. and Nešlehová, J. (2009). Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions., Ann. Stat. 37 3059–3097.Mathematical Reviews (MathSciNet): MR2541455
Digital Object Identifier: doi:10.1214/07-AOS556
Project Euclid: euclid.aos/1247836677 - Meinshausen, N., Maathuis, M. H. and Bühlmann, P. (2011). Asymptotic optimality of the Westfall-Young permutation procedure for multiple testing under dependence., Ann. Stat. 39 3369–3391.Mathematical Reviews (MathSciNet): MR3012412
Digital Object Identifier: doi:10.1214/11-AOS946
Project Euclid: euclid.aos/1330958683 - Müller, A. and Scarsini, M. (2005). Archimedean copulae and positive dependence., J. Multivariate Anal. 93 434–445.Mathematical Reviews (MathSciNet): MR2162647
Digital Object Identifier: doi:10.1016/j.jmva.2004.04.003 - Nelsen, R. B. (2006)., An Introduction to Copulas. 2nd ed. Springer Series in Statistics. New York, NY: Springer.Mathematical Reviews (MathSciNet): MR2197664
- Olshen, R. (1974). A note on exchangeable sequences., Z. Wahrscheinlichkeitstheor. Verw. Geb. 28 317–321.
- Pollard, K. S. and van der Laan, M. J. (2004). Choice of a null distribution in resampling-based multiple testing., J. Stat. Plann. Inference 125 85–100.Mathematical Reviews (MathSciNet): MR2086890
Digital Object Identifier: doi:10.1016/j.jspi.2003.07.019 - Sarkar, S. K. (2002). Some results on false discovery rate in stepwise multiple testing procedures., Ann. Stat. 30 239–257.Mathematical Reviews (MathSciNet): MR1892663
Digital Object Identifier: doi:10.1214/aos/1015362192
Project Euclid: euclid.aos/1015362192 - Sarkar, S. K. (2006). False discovery and false nondiscovery rates in single-step multiple testing procedures., Ann. Stat. 34 394–415.Mathematical Reviews (MathSciNet): MR2275247
Digital Object Identifier: doi:10.1214/009053605000000778
Project Euclid: euclid.aos/1146576268 - Sarkar, S. K. (2008a). Rejoinder: On methods controlling the false discovery rate., Sankhyā: The Indian Journal of Statistics Ser. A 70 183–185.Mathematical Reviews (MathSciNet): MR2551812
- Sarkar, S. K. (2008b). On methods controlling the false discovery rate., Sankhyā: The Indian Journal of Statistics Ser. A 70 135–168.Mathematical Reviews (MathSciNet): MR2551809
- Schweder, T. and Spjøtvoll, E. (1982). Plots of $P$-values to evaluate many tests simultaneously., Biometrika 69 493–502.
- Shorack, G. R. and Wellner, J. A. (1986)., Empirical Processes with Applications to Statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York.Mathematical Reviews (MathSciNet): MR838963
- Stange, J., Bodnar, T. and Dickhaus, T. (2013). Uncertainty quantification for the family-wise error rate in multivariate copula models. WIAS Preprint No. 1862, Weierstrass Institute for Applied Analysis and Stochastics Berlin. Available at, http://www.wias-berlin.de/preprint/1862/wias_preprints_1862.pdf.Mathematical Reviews (MathSciNet): MR3242331
- Storey, J. D. (2002). A direct approach to false discovery rates., J. R. Stat. Soc., Ser. B, Stat. Methodol. 64 479–498.
- Storey, J. D., Taylor, J. E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach., J. R. Stat. Soc., Ser. B, Stat. Methodol. 66 187–205.Mathematical Reviews (MathSciNet): MR2035766
Digital Object Identifier: doi:10.1111/j.1467-9868.2004.00439.x - Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control., J. Am. Stat. Assoc. 102 901–912.Mathematical Reviews (MathSciNet): MR2411657
Digital Object Identifier: doi:10.1198/016214507000000545 - Tamhane, A. C., Liu, W. and Dunnett, C. W. (1998). A generalized step-up-down multiple test procedure., Can. J. Stat. 26 353–363.
- Troendle, J. F. (2000). Stepwise normal theory multiple test procedures controlling the false discovery rate., Journal of Statistical Planning and Inference 84 139–158.Mathematical Reviews (MathSciNet): MR1747501
Digital Object Identifier: doi:10.1016/S0378-3758(99)00145-7 - Westfall, P. H. and Young, S. S. (1993)., Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. Wiley, New York.
The Institute of Mathematical Statistics and the Bernoulli Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Inequalities for the false discovery rate (FDR) under dependence
Heesen, Philipp and Janssen, Arnold, Electronic Journal of Statistics, 2015 - An adaptive step-down procedure with proven FDR control under independence
Gavrilov, Yulia, Benjamini, Yoav, and Sarkar, Sanat K., Annals of Statistics, 2009 - On stepdown control of the false discovery proportion
Romano, Joseph P. and Shaikh, Azeem M., Optimality, 2006
- Inequalities for the false discovery rate (FDR) under dependence
Heesen, Philipp and Janssen, Arnold, Electronic Journal of Statistics, 2015 - An adaptive step-down procedure with proven FDR control under independence
Gavrilov, Yulia, Benjamini, Yoav, and Sarkar, Sanat K., Annals of Statistics, 2009 - On stepdown control of the false discovery proportion
Romano, Joseph P. and Shaikh, Azeem M., Optimality, 2006 - Some Results on False Discovery Rate in Stepwise multiple testing
procedures
Sarkar, Sanat K., Annals of Statistics, 2002 - FDR control with adaptive procedures and FDR
monotonicity
Zeisel, Amit, Zuk, Or, and Domany, Eytan, Annals of Applied Statistics, 2011 - Multiple hypotheses testing and expected number of type I.
errors
Finner, H. and Roters, M., Annals of Statistics, 2002 - Testing over a continuum of null hypotheses with False Discovery Rate control
Blanchard, Gilles, Delattre, Sylvain, and Roquain, Etienne, Bernoulli, 2014 - Variability and stability of the false discovery proportion
Ditzhaus, Marc and Janssen, Arnold, Electronic Journal of Statistics, 2019 - Online rules for control of false discovery rate and false discovery exceedance
Javanmard, Adel and Montanari, Andrea, Annals of Statistics, 2018 - Dependency and false discovery rate: Asymptotics
Finner, Helmut, Dickhaus, Thorsten, and Roters, Markus, Annals of Statistics, 2007
