Electronic Journal of Probability

Weighted power variations of iterated Brownian motion

Ivan Nourdin and Giovanni Peccati

Full-text: Open access

Abstract

We characterize the asymptotic behaviour of the weighted power variation processes associated with iterated Brownian motion. We prove weak convergence results in the sense of finite dimensional distributions, and show that the laws of the limiting objects can always be expressed in terms of three independent Brownian motions $X, Y$ and $B$, as well as of the local times of $Y$. In particular, our results involve ''weighted'' versions of Kesten and Spitzer's Brownian motion in random scenery. Our findings extend the theory initiated by Khoshnevisan and Lewis (1999), and should be compared with the recent result by Nourdin and Réveillac (2008), concerning the weighted power variations of fractional Brownian motion with Hurst index $H=1/4$.

Article information

Source
Electron. J. Probab., Volume 13 (2008), paper no. 43, 1229-1256.

Dates
Accepted: 3 August 2008
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464819116

Digital Object Identifier
doi:10.1214/EJP.v13-534

Mathematical Reviews number (MathSciNet)
MR2430706

Zentralblatt MATH identifier
1193.60028

Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 60G18: Self-similar processes 60K37: Processes in random environments

Keywords
Brownian motion Brownian motion in random scenery Iterated Brownian motion Limit theorems Weighted power variations

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Nourdin, Ivan; Peccati, Giovanni. Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2008), paper no. 43, 1229--1256. doi:10.1214/EJP.v13-534. https://projecteuclid.org/euclid.ejp/1464819116


Export citation

References

  • O.E. Barndorff-Nielsen, S.E. Graversen and N. Shepard (2004). Power variation and stochastic volatility: a review and some new results. J. Appl. Probab. 44(A), 133-143.
  • K. Burdzy (1993). Some path properties of iterated Brownian motion. In: Seminar on Stochastic Processes (E. Cinlar, K.L. Chung and M.J. Sharpe, eds.), Birkhäuser, Boston, 67-87.
  • K. Burdzy (1994). Variation of iterated Brownian motion. In: Measure-Valued Processes, Stochastic Partial Differential Equations and Interacting Systems (D.A. Dawson, ed.), CRM Proceedings and Lecture Notes 5, 35-53.
  • K. Burdzy and D. Khoshnevisan (1998). Brownian motion in a Brownian crack. Ann. Appl. Probab 8, 708-748.
  • J.M. Corcuera, D. Nualart and J.H.C. Woerner (2006). Power variation of some integral long memory process. Bernoulli 12(4), 713-735.
  • R.D. DeBlassie (2004). Iterated Brownian motion in an open set. Ann. Appl. Probab. 14(3), 1529-1558.
  • T.E. Harris (1965). Diffusions with collisions between particles. J. Appl. Probab. 2, 323-338.
  • J. Jacod (1994). Limit of random measures associated with the increments of a Brownian semimartingale. Prépublication de l'Université Paris VI.
  • J. Jacod and A.N. Shiryayev (1987). Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin, Heidelberg, New York.
  • H. Kesten and F. Spitzer (1979). A limit theorem related to a new class of self-similar process. Z. Wahrsch. Verw. Gebiete 50, 5-25.
  • D. Khoshnevisan and T.M. Lewis (1999). Stochastic calculus for Brownian motion on a Brownian fracture. Ann. Appl. Probab. 9(3), 629-667.
  • D. Khoshnevisan and T.M. Lewis (1999). Iterated Brownian motion and its intrinsic skeletal structure. In: Progresses in Probability 45, 201-210. Birkhäuser.
  • E. Nane (2006). Iterated Brownian motion in bounded domains in R^n. Stochastic Process. Appl. 116 (6), 905-916.
  • E. Nane (2007). Lifetime asymptotics of iterated Brownian motion in R^n. ESAIM Probab. Stat. 11, 147-160.
  • I. Nourdin (2008). Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion. Ann. Probab., to appear.
  • I. Nourdin, D. Nualart and C.A. Tudor (2007). Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Prépublication de l'Université Paris VI.
  • I. Nourdin and A. Réveillac (2008). Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case H=1/4. Prépublication de l'Université Paris VI.
  • D. Nualart (2006). The Malliavin calculus and related topics. Springer-Verlag, Berlin, 2nd edition.
  • E. Orsingher and L. Beghin (2008). Fractional diffusion equations and processes with randomly-varying time. Ann. Probab., to appear.
  • G. Peccati and C.A. Tudor (2005). Gaussian limits for vector-valued multiple stochastic integrals. In: Séminaire de Probabilités XXXVIII, 247-262. Lecture Notes in Math. 1857, Springer-Verlag, Berlin.
  • J. Swanson (2007). Variations of the solution to a stochastic heat equation. Ann. Probab. 35, no. 6, 2122-2159.
  • M.S. Taqqu (1975). Weak convergence to fractional Brownian motion and to Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31, 287-302.