Duke Mathematical Journal

Analytic torsion for line bundles on Riemann surfaces

Jay Jorgenson

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 62, Number 3 (1991), 527-549.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077296504

Digital Object Identifier
doi:10.1215/S0012-7094-91-06222-8

Mathematical Reviews number (MathSciNet)
MR1104806

Zentralblatt MATH identifier
0749.57005

Subjects
Primary: 58G26
Secondary: 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30] 14H55: Riemann surfaces; Weierstrass points; gap sequences [See also 30Fxx]

Citation

Jorgenson, Jay. Analytic torsion for line bundles on Riemann surfaces. Duke Math. J. 62 (1991), no. 3, 527--549. doi:10.1215/S0012-7094-91-06222-8. https://projecteuclid.org/euclid.dmj/1077296504


Export citation

References

  • [A1] L. Alvarez-Gaume, J.-B. Bost, G. Moore, P. Nelson, and C. Vafa, Bosonization on higher genus Riemann surfaces, Comm. Math. Phys. 112 (1987), no. 3, 503–552.
  • [A2] L. Alvarez-Gaumé, G. Moore, P. Nelson, C. Vafa, and J.-B. Bost, Bosonization in arbitrary genus, Phys. Lett. B 178 (1986), no. 1, 41–47.
  • [A-M-V] L. Alvarez-Gaumé, G. Moore, P. Nelson, C. Vafa, and J.-B. Bost, Theta functions, modular invariance, and strings, Comm. Math. Phys. 106 (1986), no. 1, 1–40.
  • [B] J.-B. Bost, Conformal and holomorphic anomalies on Riemann surfaces and determinant line bundles, VIIIth international congress on mathematical physics (Marseille, 1986), World Sci. Publishing, Singapore, 1987, pp. 768–775.
  • [Fa] G. Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424.
  • [F-K] H. Farkas and I. Kra, Riemann surfaces, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1980.
  • [F1] J. Fay, Analytic torsion and Prym differentials, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 107–122.
  • [F2] J. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, vol. 352, Springer-Verlag, Berlin, 1973.
  • [F3] J. D. Fay, Perturbation of analytic torsion on Riemann Surfaces, preprint, 1989.
  • [Fo] O. Forster, Lectures on Riemann surfaces, Graduate Texts in Mathematics, vol. 81, Springer-Verlag, New York, 1981.
  • [G-H] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978.
  • [Gu] R. C. Gunning, Lectures on Riemann surfaces, Princeton Mathematical Notes, Princeton University Press, Princeton, N.J., 1966.
  • [He1] D. A. Hejhal, Theta functions, kernel functions, and Abelian integrals, vol. 129, Memoirs AMS, Providence, R.I., 1972.
  • [He2] D. A. Hejhal, The Selberg trace formula for $\rm PSL(2,\,\bf R)$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983.
  • [J1] J. Jorgenson, Asymptotic behavior of Faltings's delta function, Duke Math. J. 61 (1990), no. 1, 221–254.
  • [J2] J. Jorgenson, Faltings's delta function and analytic torsion for line bundles, Ph.D. thesis, Stanford University, 1989.
  • [Ka] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
  • [Ko] K. Kodaira, Complex manifolds and deformation of complex structures, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 283, Springer-Verlag, New York, 1986.
  • [K] S. G. Krantz, Function theory of several complex variables, John Wiley & Sons Inc., New York, 1982.
  • [La] S. Lang, Introduction to algebraic and abelian functions, Graduate Texts in Mathematics, vol. 89, Springer-Verlag, New York, 1982.
  • [M-P] S. Minakshisundaram and Ȧ. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canadian J. Math. 1 (1949), 242–256.
  • [Mu1] D. Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston Inc., Boston, MA, 1983.
  • [Mu2] D. Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston Inc., Boston, MA, 1984.
  • [P] S. J. Patterson, Book Review of The Selberg Trace Formula for $\mathrmPSL(2,\mathbfR)$, by D. A. Hejhal, Bull. Amer. Math. Soc. 84 (1978), 256–260.
  • [P-S] R. Phillips and P. Sarnak, Geodesics in homology classes, Duke Math. J. 55 (1987/88), no. 2, 287–297.
  • [Q] D. Kvillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 37–41, 96.
  • [R-S] D. B. Ray and I. M. Singer, Analytic torsion for complex manifolds, Ann. of Math. (2) 98 (1973), 154–177.
  • [S1] P. Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987), no. 1, 113–120.
  • [S2] P. Sarnak, Special values of Selberg's zeta-function, Number theory, trace formulas and discrete groups (Oslo, 1987) ed. K. E. Aubert, et al., Academic Press, Boston, MA, 1989, pp. 457–465.
  • [Sm] D.-J. Smit, String theory and algebraic geometry of moduli spaces, Comm. Math. Phys. 114 (1988), no. 4, 645–685.
  • [V-Z] A. B. Venkov and P. G. Zograf, On analogues of the Artin factorization formulas in the spectral theory of automorphic functions connected with induced representations of Fuchsian groups, Math. USSR-Izv. 21 (1983), 435–443.