Open Access
August 2016 The Cramér condition for the Curie–Weiss model of SOC
Matthias Gorny
Braz. J. Probab. Stat. 30(3): 401-431 (August 2016). DOI: 10.1214/15-BJPS286
Abstract

We pursue the study of the Curie–Weiss model of self-organized criticality we designed in (Ann. Probab. 44 (2016) 444–478). We extend our results to more general interaction functions and we prove that, for a class of symmetric distributions satisfying a Cramér condition (C) and some integrability hypothesis, the sum $S_{n}$ of the random variables behaves as in the typical critical generalized Ising Curie–Weiss model. The fluctuations are of order $n^{3/4}$ and the limiting law is $k\exp(-\lambda x^{4})dx$ where $k$ and $\lambda$ are suitable positive constants. In (Ann. Probab. 44 (2016) 444–478), we obtained these results only for distributions having an even density.

References

1.

Andriani, C. and Baldi, P. (1997). Sharp estimates of deviations of the sample mean in many dimensions. Annales de L’I.H.P. Probabilités Et Statistiques 33, 371–385.Andriani, C. and Baldi, P. (1997). Sharp estimates of deviations of the sample mean in many dimensions. Annales de L’I.H.P. Probabilités Et Statistiques 33, 371–385.

2.

Bahadur, R. R. and Ranga Rao, R. (1960). On deviations of the sample mean. The Annals of Mathematical Statistics 31, 1015–1027.Bahadur, R. R. and Ranga Rao, R. (1960). On deviations of the sample mean. The Annals of Mathematical Statistics 31, 1015–1027.

3.

Bak, P., Tang, C. and Wiesenfeld, K. (1987). Self-organized criticality: An explanation of $1/f$ noise. Physical Review Letters 59, 381–384.Bak, P., Tang, C. and Wiesenfeld, K. (1987). Self-organized criticality: An explanation of $1/f$ noise. Physical Review Letters 59, 381–384.

4.

Borovkov, A. A. and Mogulskii, A. A. (1992). Large deviations and testing statistical hypotheses. I. Large deviations of sums of random vectors. Siberian Advances in Mathematics 2, 52–120.Borovkov, A. A. and Mogulskii, A. A. (1992). Large deviations and testing statistical hypotheses. I. Large deviations of sums of random vectors. Siberian Advances in Mathematics 2, 52–120.

5.

Cerf, R. and Gorny, M. (2016). A Curie–Weiss model of Self–Organized Criticality. The Annals of Probability 44, 444–478.Cerf, R. and Gorny, M. (2016). A Curie–Weiss model of Self–Organized Criticality. The Annals of Probability 44, 444–478.

6.

Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Berlin: Springer.Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Berlin: Springer.

7.

Eisele, T. and Ellis, R. S. (1988). Multiple phase transitions in the generalized Curie–Weiss model. Journal of Statistical Physics 52, 161–202. MR968583 10.1007/BF01016409Eisele, T. and Ellis, R. S. (1988). Multiple phase transitions in the generalized Curie–Weiss model. Journal of Statistical Physics 52, 161–202. MR968583 10.1007/BF01016409

8.

Ellis, R. S. and Newman, C. M. (1978). Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 44, 117–139.Ellis, R. S. and Newman, C. M. (1978). Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 44, 117–139.

9.

Gorny, M. (2014). A Curie–Weiss model of self-organized criticality: The Gaussian case. Markov Processes and Related Fields 20, 563–576.Gorny, M. (2014). A Curie–Weiss model of self-organized criticality: The Gaussian case. Markov Processes and Related Fields 20, 563–576.

10.

Martin-Löf, A. (1982). A Laplace approximation for sums of independent random variables. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 59, 101–115.Martin-Löf, A. (1982). A Laplace approximation for sums of independent random variables. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 59, 101–115.

11.

Rudin, W. (1987). Real and Complex Analysis, 3rd ed. New York: McGraw-Hill Book Co.Rudin, W. (1987). Real and Complex Analysis, 3rd ed. New York: McGraw-Hill Book Co.
Copyright © 2016 Brazilian Statistical Association
Matthias Gorny "The Cramér condition for the Curie–Weiss model of SOC," Brazilian Journal of Probability and Statistics 30(3), 401-431, (August 2016). https://doi.org/10.1214/15-BJPS286
Received: 1 October 2014; Accepted: 1 February 2015; Published: August 2016
Vol.30 • No. 3 • August 2016
Back to Top