Open Access
december 2018 Sporadic finite simple groups and block designs
Xiaohong Zhang, Shenglin Zhou
Bull. Belg. Math. Soc. Simon Stevin 25(4): 495-506 (december 2018). DOI: 10.36045/bbms/1546570905

Abstract

The purpose of this paper is to classify all pairs $(\mathcal{D}, G)$, where $\mathcal{D}$ is a non-trivial $2$-$(v, k, \lambda)$ design with $\lambda\leq10$, and $G\leq \mathrm{Aut}(\mathcal{D})$ acts transitively on the set of blocks of $\mathcal{D}$ and primitively on the set of points of $\mathcal{D}$ with sporadic socle. We prove that there are exactly 15 such pairs $(\mathcal{D}, G)$.

Citation

Download Citation

Xiaohong Zhang. Shenglin Zhou. "Sporadic finite simple groups and block designs." Bull. Belg. Math. Soc. Simon Stevin 25 (4) 495 - 506, december 2018. https://doi.org/10.36045/bbms/1546570905

Information

Published: december 2018
First available in Project Euclid: 4 January 2019

zbMATH: 07038164
MathSciNet: MR3896267
Digital Object Identifier: 10.36045/bbms/1546570905

Subjects:
Primary: 05B05 , 20B25

Keywords: $2$-design , automorphism group , block-transitive , point-primitive , socle , sporadic simple group

Rights: Copyright © 2018 The Belgian Mathematical Society

Vol.25 • No. 4 • december 2018
Back to Top