Bulletin (New Series) of the American Mathematical Society

Review: Theodore Frankel, Gravitational curvature, an introduction to Einstein's theory, and Hans Stephani, General relativity, an introduction to the theory of the gravitational field, and Robert M. Wald, General relativity

Andrzej Trautman

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 14, Number 1 (1986), 152-158.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183552796

Citation

Trautman, Andrzej. Review: Theodore Frankel, Gravitational curvature, an introduction to Einstein's theory , and Hans Stephani, General relativity, an introduction to the theory of the gravitational field , and Robert M. Wald, General relativity. Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 1, 152--158. https://projecteuclid.org/euclid.bams/1183552796


Export citation

References

  • 1. H. Bateman, The transformation of coordinates which can be used to transform one physical problem into another, Proc. London Math. Soc. 8 (1910), 469-488.
  • 2. H. Bondi, F. A. E. Pirani and I. Robinson, Gravitational waves in general relativity III. Exact plane waves, Proc. Roy. Soc. London A251 (1959), 519-533.
  • 3. E. Cartan, Sur les espaces conformes généralisés et l'Univers optique, C. R. Acad. Sci. Paris 174 (1922), 857-859.
  • 4. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée I; I (suite); II, Ann. Sci. École Norm. Sup. 40 (1923), 325-412; 41 (1924), 1-25; 42 (1925), 17-88. English translation by A. Ashtekar and A. Magnon-Ashtekar, Bibliopolis, Naples, 1985.
  • 5. S. Chandrasekhar, The mathematical theory of black holes, Clarendon Press, Oxford, 1983.
  • 6. S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271.
  • 7. W. K. Clifford, The common sense of the exact sciences, D. Appleton and Co., New York, 1885.
  • 8. S. Deser and B. Zumino, Consistent supergravity, Phys. Lett. 62B (1976), 335-337.
  • 9. S. K. Donaldson, Self-dual connections and the topology of smooth 4-manifolds, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 81-83.
  • 10. A. Einstein and N. Rosen, On gravitational waves, J. Franklin Inst. 223 (1937), 43-54.
  • 11. D. Z. Freedman, P. Van Nieuwenhuizen and S. Ferrara, Progress toward a theory of supergravity, Phys. Rev. D13 (1976), 3214-18.
  • 12. A. Friedmann, Über die Krümmung des Raumes, Z. Phys. 10 (1922), 377-386.
  • 13. R. P. Geroch, What is a singularity in general relativity?, Ann. Physics 48 (1968), 526-540.
  • 14. K. Gödel, An example of a new type of cosmological solutions of Einstein's field equations of gravitation, Rev. Modern Phys. 21 (1949), 447-450.
  • 15. J. N. Goldberg and R. K. Sachs, A theorem on Petrov types, Acta Phys. Polon. 22 Suppl. (1962), 13-23.
  • 16. A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), 248-329.
  • 17. S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973.
  • 18. S. W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. London A314 (1970), 529-548.
  • 19. R. P. Kerr and A. Schild, A new class of vacuum solutions of the Einstein field equations, Atti del Convegno sulla Relatività Generale: Probleme dell'energia e onde gravitazionali, G. Barbèra, Editore, Florence, 1965.
  • 20. T. W. B. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys. 2 (1961), 212-221.
  • 21. D. Kramer, H. Stephani, M. MacCallum and E. Herlt, Exact solutions of Einstein's field equations, Cambridge Univ. Press and Deutsch Verlag der Wissenschaften, Cambridge and Berlin, 1980.
  • 22. H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155-158.
  • 23. A. Lichnerowicz, Théories relativistes de la gravitation et de l'électromagnétisme, Masson et Cie, Paris, 1955.
  • 24. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, 1973.
  • 25. E. T. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962), 566-578; Errata: Ibid. 4 (1963), 998.
  • 26. S. P. Novikov, Topology of foliations, Trudy Moskov. Mat. Obšč 14 (1965), 248-278 = Trans. Moscow Math. Soc. (1965), 268-304.
  • 27. I. Ozsvàth and E. Schücking, The finite rotating universe, Ann. Physics 55 (1969), 166-204.
  • 28. R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965), 57-59.
  • 29. R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967), 345-366.
  • 30. R. Penrose, Techniques of differential topology in relativity, SIAM, Philadelphia, 1972.
  • 31. R. Penrose, Physical space-time and nonrealizable CR-structures, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 427-448.
  • 32. R. Penrose and M. A. H. MacCallum, Twistor theory: An approach to the quantisation of fields and space-time, Phys. Rep. 6 (1972), 241-316.
  • 33. R. Penrose and W. Rindler, Spinors and space-time, Cambridge Univ. Press, Cambridge, vol. I: 1984, vol. II: to appear.
  • 34. I. Robinson, Null electromagnetic fields, J. Math. Phys. 2 (1961), 290-291.
  • 35. I. Robinson and A. Trautman, Integrable optical geometry, Lett. Math. Phys. 10 (1985), 179-182.
  • 36. I. Robinson and A. Trautman, A generalization of Mariot 's theorem on congruences of null geodesics, Proc. Roy. Soc. London (to appear).
  • 37. D. W. Sciama, On the analogy between charge and spin in general relativity, Recent developments in General Relativity, Pergamon Press and PWN, Oxford and Warsaw, 1962.
  • 38. A. H. Taub, Empty space-times admitting a three-parameter group of motions, Ann. of Math. 53 (1951), 472-490.
  • 39. A. Trautman, Deformations of the Hodge map and optical geometry, J. Geometry and Physics (Florence) 1 (1984), 85-95.
  • 40. S. Weinberg, Gravitation and cosmology, J. Wiley, New York, 1972.
  • 41. R. O. Wells, Jr., The Cauchy-Riemann equations and differential geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 187-199.
  • 42. C. N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954), 191-195.