Bulletin (New Series) of the American Mathematical Society

On $\mathfrak{s}\mathfrak{o}_8$ and tensor operators of $\mathfrak{s}\mathfrak{l}_3$

Daniel E. Flath

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 10, Number 1 (1984), 97-100.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183551418

Mathematical Reviews number (MathSciNet)
MR722860

Zentralblatt MATH identifier
0529.17006

Subjects
Primary: 17B10: Representations, algebraic theory (weights) 17B20: Simple, semisimple, reductive (super)algebras
Secondary: 17B35: Universal enveloping (super)algebras [See also 16S30] 81C40

Citation

Flath, Daniel E. On $\mathfrak{s}\mathfrak{o}_8$ and tensor operators of $\mathfrak{s}\mathfrak{l}_3$. Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 1, 97--100. https://projecteuclid.org/euclid.bams/1183551418


Export citation

References

  • 1. L. C. Biedenharn and D. E. Flath, On the structure of tensor operators in SU3, Comm. Math. Phys. (to appear).
  • 2. James D. Louck and L. C. Biedenharn, Canonical unit adjoint tensor operators in U(n), J. Math. Phys. 11 (1970), 2368-2414.
  • 3. J. D. Louck, Recent progress toward a theory of tensor operators in unitary groups, Amer. J. Phys. 38 (1970), 3-42.
  • 4. D. E. Flath, The Clebsch-Gordan formulas, Enseign. Math, (to appear).
  • 5. D. E. Flath and L. C. Biedenharn, Beyond the enveloping algebra of $sl\sb 3$, preprint, 1982.
  • 6. T. J. Enright, R. Howe and N. R. Wallach, A classification of unitary highest weight modules, preprint, 1981.