Open Access
2010 Euler's Elastica and Beyond
Shigeki Matsutani
J. Geom. Symmetry Phys. 17: 45-86 (2010). DOI: 10.7546/jgsp-17-2010-45-86


In 1691, James (Jacob) Bernoulli proposed a problem called elastica problem: What shape of elastica, an ideal thin elastic rod on a plane, is allowed? Daniel Bernoulli discovered its energy functional, Euler-Bernoulli energy function, and the minimal principle of the elastica. Using it, Euler essentially solved the problem in 1744 by developing the variational method, elliptic integral theory and so on. This article starts with a review of its mathematical meaning and historical background. After that we present one of its extensions, statistical mechanics of elastica as a model of the DNA and the large polymers. We will call it a quantized elastica, and show that it is connected with the modified Korteweg-de Vries hierarchy, loop space, submanifold Dirac operators, moduli spaces of the real hyperelliptic curves and so on. By reviewing the other extensions of the elastica problem, we will see that elastica is in the center of mathematics even now.


Download Citation

Shigeki Matsutani. "Euler's Elastica and Beyond." J. Geom. Symmetry Phys. 17 45 - 86, 2010.


Published: 2010
First available in Project Euclid: 24 May 2017

zbMATH: 1209.37086
MathSciNet: MR2642065
Digital Object Identifier: 10.7546/jgsp-17-2010-45-86

Rights: Copyright © 2010 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

Back to Top