Analysis & PDE

Rademacher functions in Nakano spaces

Sergey Astashkin and Mieczysław Mastyło

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The closed span of Rademacher functions is investigated in Nakano spaces Lp() on [0,1] equipped with the Lebesgue measure. The main result of this paper states that under some conditions on distribution of the exponent function p the Rademacher functions form in Lp() a basic sequence equivalent to the unit vector basis in 2.

Article information

Anal. PDE, Volume 9, Number 1 (2016), 1-14.

Received: 27 March 2015
Revised: 24 July 2015
Accepted: 7 September 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Secondary: 46B20: Geometry and structure of normed linear spaces 46B42: Banach lattices [See also 46A40, 46B40]

Rademacher functions Nakano spaces symmetric spaces


Astashkin, Sergey; Mastyło, Mieczysław. Rademacher functions in Nakano spaces. Anal. PDE 9 (2016), no. 1, 1--14. doi:10.2140/apde.2016.9.1.

Export citation


  • S. V. Astashkin, “Rademacher functions in symmetric spaces”, Sovrem. Mat. Fundam. Napravl. 32 (2009), 3–161. In Russian; translated in J. Math. Sci. $($N.Y.$)$ 169:6 (2010), 725–886.
  • S. V. Astashkin and L. Maligranda, “Rademacher functions in Cesàro type spaces”, Studia Math. 198:3 (2010), 235–247.
  • S. V. Astashkin and E. M. Semënov, “\cyr Prostranstva, opredelyaemye funktsieĭ Pe1li”, Mat. Sb. 204:7 (2013), 3–24. Translated as “Spaces defined by the Paley function” in Sbornik Math. 204:7 (2013), 937–957.
  • S. V. Astashkin, M. V. Leibov, and L. Maligranda, “Rademacher functions in BMO”, Studia Math. 205:1 (2011), 83–100.
  • C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics 129, Academic Press, Boston, 1988.
  • R. Blei, Analysis in integer and fractional dimensions, Cambridge Studies in Advanced Mathematics 71, Cambridge University Press, 2001.
  • D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, Birkhäuser, Heidelberg, 2013.
  • D. V. Cruz-Uribe, A. Fiorenza, M. V. Ruzhansky, and J. Wirth, Variable Lebesgue spaces and hyperbolic systems (Barcelona, 2011), edited by S. Tikhonov, Birkhäuser, Basel, 2014.
  • L. Diening, P. Harjulehto, P. Häst ö, and M. R\ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg, 2011.
  • J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, 1995.
  • A. Fiorenza and J. M. Rakotoson, “Relative rearrangement and Lebesgue spaces $L\sp {p(\cdot)}$ with variable exponent”, J. Math. Pures Appl. $(9)$ 88:6 (2007), 506–521.
  • W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19:217, American Mathematical Society, Providence, RI, 1979.
  • S. G. Kreĭn, J. \=I. Petunīn, and E. M. Semënov, Interpolation of linear operators, Translations of Mathematical Monographs 54, American Mathematical Society, Providence, RI, 1982.
  • J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, II: Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 97, Springer, Berlin, 1979.
  • G. G. Lorentz, “On the theory of spaces $\Lambda$”, Pacific J. Math. 1 (1951), 411–429.
  • B. Maurey and G. Pisier, “Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach”, Studia Math. 58:1 (1976), 45–90.
  • J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Springer, Berlin, 1983.
  • G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics 60, American Mathematical Society, Providence, RI, 1986.
  • V. A. Rodin and E. M. Semënov, “Rademacher series in symmetric spaces”, Anal. Math. 1:3 (1975), 207–222.
  • V. A. Rodin and E. M. Semënov, “\cyr O dopolnyaemosti podprostranstva, porozhdennogo sistemoĭ Rademakhera, v simmetrichnom prostranstve”, Funktsional. Anal. i Prilozhen. 13:2 (1979), 91–92. Translated as “Complementability of the subspace generated by the Rademacher system in a symmetric space” in Funct. Anal. Appl. 13:2 (1979), 150–151.
  • Y. Sagher and K. C. Zhou, “A local version of a theorem of Khinchin”, pp. 327–330 in Analysis and partial differential equations, edited by C. Sadosky, Lecture Notes in Pure and Applied Mathematics 122, Dekker, New York, 1990.
  • I. I. Sharapudinov, “\cyr O bazisnosti sistemy KHaara v prostranstve ${\mathscr L}\sp {p(t)}([0,1])$ \cyr i printsipe lokalizatsii v srednem”, Mat. Sb. $($N.S.$)$ 130(172):2 (1986), 275–283. Translated as “On the basis property of the Haar system in the space ${\mathscr L}\sp {p(t)}([0,1])$ and the principle of localization in the mean” in Math. USSR Sbornik 58:1 (1987), 279–287.
  • S. J. Szarek, “On the best constants in the Khinchin inequality”, Studia Math. 58:2 (1976), 197–208.