The Annals of Statistics

Operational time and in-sample density forecasting

Young K. Lee, Enno Mammen, Jens P. Nielsen, and Byeong U. Park

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we consider a new structural model for in-sample density forecasting. In-sample density forecasting is to estimate a structured density on a region where data are observed and then reuse the estimated structured density on some region where data are not observed. Our structural assumption is that the density is a product of one-dimensional functions with one function sitting on the scale of a transformed space of observations. The transformation involves another unknown one-dimensional function, so that our model is formulated via a known smooth function of three underlying unknown one-dimensional functions. We present an innovative way of estimating the one-dimensional functions and show that all the estimators of the three components achieve the optimal one-dimensional rate of convergence. We illustrate how one can use our approach by analyzing a real dataset, and also verify the tractable finite sample performance of the method via a simulation study.

Article information

Source
Ann. Statist., Volume 45, Number 3 (2017), 1312-1341.

Dates
Received: July 2015
Revised: June 2016
First available in Project Euclid: 13 June 2017

Permanent link to this document
https://projecteuclid.org/euclid.aos/1497319696

Digital Object Identifier
doi:10.1214/16-AOS1486

Mathematical Reviews number (MathSciNet)
MR3662456

Zentralblatt MATH identifier
1371.62031

Subjects
Primary: 62G07: Density estimation
Secondary: 62G20: Asymptotic properties

Keywords
Density estimation kernel smoothing backfitting chain Ladder

Citation

Lee, Young K.; Mammen, Enno; Nielsen, Jens P.; Park, Byeong U. Operational time and in-sample density forecasting. Ann. Statist. 45 (2017), no. 3, 1312--1341. doi:10.1214/16-AOS1486. https://projecteuclid.org/euclid.aos/1497319696


Export citation

References

  • Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer, New York.
  • Baraud, Y. and Birgé, L. (2014). Estimating composite functions by model selection. Ann. Inst. Henri Poincaré Probab. Stat. 50 285–314.
  • Cheng, M.-Y. (1997). A bandwidth selector for local linear density estimators. Ann. Statist. 25 1001–1013.
  • Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. J. Amer. Statist. Assoc. 90 141–150.
  • Horowitz, J. L. and Mammen, E. (2007). Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions. Ann. Statist. 35 2589–2619.
  • Jiang, J., Fan, Y. and Fan, J. (2010). Estimation in additive models with highly or nonhighly correlated covariates. Ann. Statist. 38 1403–1432.
  • Juditsky, A. B., Lepski, O. V. and Tsybakov, A. B. (2009). Nonparametric estimation of composite functions. Ann. Statist. 37 1360–1404.
  • Kuang, D., Nielsen, B. and Nielsen, J. P. (2008a). Identification of the age-period-cohort model and the extended chain-ladder model. Biometrika 95 979–986.
  • Kuang, D., Nielsen, B. and Nielsen, J. P. (2008b). Forecasting with the age-period-cohort model and the extended chain-ladder model. Biometrika 95 987–991.
  • Kuang, D., Nielsen, B. and Nielsen, J. P. (2009). Chain-ladder as maximum likelihood revisited. Annals of Actuarial Science 4 105–121.
  • Kuang, D., Nielsen, B. and Nielsen, J. P. (2011). Forecasting in an extended chain-ladder-type model. J. Risk Insur. 78 345–359.
  • Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting U.S. mortality. J. Amer. Statist. Assoc. 87 659–671.
  • Lee, Y. K., Mammen, E. and Park, B. U. (2010). Backfitting and smooth backfitting for additive quantile models. Ann. Statist. 38 2857–2883.
  • Lee, Y. K., Mammen, E. and Park, B. U. (2012). Flexible generalized varying coefficient regression models. Ann. Statist. 40 1906–1933.
  • Lee, Y. K., Mammen, E., Nielsen, J. P. and Park, B. U. (2015). Asymptotics for in-sample density forecasting. Ann. Statist. 43 620–651.
  • Lee, Y. K., Mammen, E., Nielsen, J. P. and Park, B. U. (2016). Supplement to “Operational time and in-sample density forecasting.” DOI:10.1214/16-AOS1486SUPP.
  • Mammen, E., Martínez Miranda, M. D. and Nielsen, J. P. (2015). In-sample forecasting applied to reserving and mesothelioma mortality. Insurance Math. Econom. 61 76–86.
  • Mammen, E. and Nielsen, J. P. (2003). Generalised structured models. Biometrika 90 551–566.
  • Mammen, E., Park, B. U. and Schienle, M. (2014). Additive models: Extensions and related models. In The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics (J. S. Racine, L. Su and A. Ullah, eds.) 176–211. Oxford Univ. Press, Oxford.
  • Martínez-Miranda, M. D., Nielsen, J. P., Sperlich, S. and Verrall, R. J. (2013). Continuous chain ladder: Reformulating and generalising a classical insurance problem. Expert Syst. Appl. 40 5588–5603.
  • Martínez Miranda, M. D., Nielsen, J. P. and Verrall, R. (2012). Double chain ladder. Astin Bull. 42 59–76.
  • Mikosch, T. (2009). Non-life Insurance Mathematics, 2nd ed. Universitext. Springer, Berlin.
  • Park, B. U. and Marron, J. S. (1990). Comparison of data-driven bandwidth selectors. J. Amer. Statist. Assoc. 85 66–72.
  • Reid, P. H. (1978). Claims reserves in general insurance. J. Inst. Actuar. 105 211–296.
  • Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22 1346–1370.
  • Taylor, G. C. (1981). Speed finalisation of claims and claims run-off analysis. Astin Bull. 12 81–100.
  • Taylor, G. C. (1982). Zehnwirth’s comment on the see-saw method: A reply. Insurance Math. Econom. 1 105–108.
  • Wilke, R. (2016). Forecasting macroeconomic labour market flows: What can we learn from micro level analysis? (submitted manuscript).
  • Yu, K., Park, B. U. and Mammen, E. (2008). Smooth backfitting in generalized additive models. Ann. Statist. 36 228–260.
  • Zehnwirth, B. (1982). Comments on Taylor’s see-saw approach to claims reserving. Insurance Math. Econom. 1 99–103.
  • Zhang, X., Park, B. U. and Wang, J.-L. (2013). Time-varying additive models for longitudinal data. J. Amer. Statist. Assoc. 108 983–998.

Supplemental materials

  • Supplement to “Operational time and in-sample density forecasting”. We provide the proofs of Theorems 3 and 6 in the supplement.