The Annals of Statistics

Identification of multitype branching processes

F. Maaouia and A. Touati

Full-text: Open access


We solve the problem of constructing an asymptotic global confidence region for the means and the covariance matrices of the reproduction distributions involved in a supercritical multitype branching process. Our approach is based on a central limit theorem associated with a quadratic law of large numbers performed by the maximum likelihood or the multidimensional Lotka–Nagaev estimator of the reproduction law means. The extension of this approach to the least squares estimator of the mean matrix is also briefly discussed.

On résout le problème de construction d’une région de confiance asymptotique et globale pour les moyennes et les matrices de covariance des lois de reproduction d’un processus de branchement multitype et supercritique. Notre approche est bas ée sur un théorème de limite centrale associé à une loi forte quadratique vérifiée par l’estimateur du maximum de vraisemblance ou l’estimateur multidimensionnel de Lotka–Nagaev des moyennes des lois de reproduction. L’extension de cette approche à l’estimateur des moindres carrés de la matrice des moyennes est aussi brièvement commentée.

Article information

Ann. Statist., Volume 33, Number 6 (2005), 2655-2694.

First available in Project Euclid: 17 February 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems 60F15: Strong theorems 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

Multitype branching process maximum likelihood estimator multidimensional Lotka–Nagaev estimator least squares estimator central limit theorem quadratic strong law of large numbers law of the iterated logarithm


Maaouia, F.; Touati, A. Identification of multitype branching processes. Ann. Statist. 33 (2005), no. 6, 2655--2694. doi:10.1214/009053605000000561.

Export citation


  • Adès, M., Dion, J.-P., Labelle, G. and Nanthi, K. (1982). Recurrence formula and the maximum likelihood estimation of the age in a simple branching process. J. Appl. Probability 19 776–784.
  • Asmussen, S. and Keiding, N. (1978). Martingale central limit theorems and asymptotic estimation theory for multitype branching processes. Adv. in Appl. Probab. 10 109–129.
  • Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, Berlin.
  • Badalbaev, I. S. and Mukhitdinov, A. (1990). On the limit distribution of some functionals in multitype branching processes. Theory Probab. Appl. 35 625–638.
  • Carvalho, M. L. (1997). A joint estimator for the eigenvalues of the reproduction mean matrix of a multitype Galton–Watson process. Linear Algebra Appl. 264 189–203.
  • Chaâbane, F. (1996). Version forte du théorème de la limite centrale fonctionnel pour les martingales. C. R. Acad. Sci. Paris Sér. I Math. 323 195–198.
  • Chaâbane, F. (2001). Invariance principles with logarithmic averaging for martingales. Studia Sci. Math. Hungar. 37 21–52.
  • Chaâbane, F. and Maâouia, F. (2000). Théorèmes limites avec poids pour les martingales vectorielles. ESAIM Probab. Statist. 4 137–189.
  • Chaâbane, F., Maâouia, F. and Touati, A. (1998). Généralisation du théorème de la limite centrale presque-sûr pour les martingales vectorielles. C. R. Acad. Sci. Paris Sér. I Math. 326 229–232.
  • Chaâbane, F., Maâouia, F. and Touati, A. (1998). Versions fortes des théorèmes limites en loi pour les martingales vectorielles. Preprint.
  • Dacunha-Castelle, D. and Duflo, M. (1983). Probabilités et Statistiques 2. Masson, Paris.
  • Dion, J.-P. (1974). Estimation of the mean and the initial probabilities of a branching process. J. Appl. Probability 11 687–694.
  • Dion, J.-P. (1975). Estimation of the variance of a branching processes. Ann. Statist. 3 1183–1187.
  • Dion, J.-P. (1993). Statistical inference for discrete time branching processes. In Lecture Notes of the 7th Summer School on Probability Theory and Mathematical Statistics (Varna, 1991) 60–121. Scientific, Cultural and Technical Publications, Singapore.
  • Duflo, M. (1997). Random Iterative Models. Springer, Berlin.
  • Guttorp, P. (1991). Statistical Inference for Branching Processes. Wiley, New York.
  • Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, San Diego.
  • Heyde, C. C. (1974). On estimating the variance of the offspring distribution in a simple branching process. Adv. in Appl. Probab. 6 421–433.
  • Heyde, C. C. (1997). Quasi-Likelihood and Its Application. A General Approach to Optimal Parameter Estimation. Springer, Berlin.
  • Heyde, C. C. and Leslie, J. R. (1971). Improved classical limit analogues for Galton–Watson processes with or without immigration. Bull. Austral. Math. Soc. 5 145–155.
  • Heyde, C. C. and Senata, E. (1971). Analogues of classical limit theorems for the supercritical Galton–Watson process with immigration. Math. Biosci. 11 249–259.
  • Keiding, N. and Lauritzen, S. L. (1978). Marginal maximum likelihood estimates and estimation of the offspring mean in a branching process. Scand. J. Statist. 5 106–110.
  • Kesten, H. and Stigum, B. P. (1966). A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Statist. 37 1211–1223.
  • Kesten, H. and Stigum, B. P. (1966). Additional limit theorems for indecomposable multidimensional Galton–Watson processes. Ann. Math. Statist. 37 1463–1481.
  • Mode, C. J. (1971). Multitype Branching Processes. North-Holland, New York.
  • Nanthi, K. (1982). Estimation of the variance for the multitype Galton–Watson process. J. Appl. Probab. 19 408–414.
  • Touati, A. (1993). Two theorems on convergence in distribution for stochastic integrals and statistical applications. Theory Probab. Appl. 38 95–117.
  • Touati, A. (1996). Vitesse de convergence en loi de l'estimateur des moindres carrés d'un modèle autorégressif (cas mixte). Ann. Inst. H. Poincaré Probab. Statist. 32 211–230.
  • Wei, C. Z. (1985). Asymptotic properties of least-squares estimates in stochastic regression models. Ann. Statist. 13 1498–1508.