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IDENTIFICATION OF MULTITYPE BRANCHING PROCESSES

BY F. MAAOUIA AND A. TOUATI

Faculté des Sciences de Tunis and Faculté des Sciences de Bizerte

We solve the problem of constructing an asymptotic global confidence
region for the means and the covariance matrices of the reproduction dis-
tributions involved in a supercritical multitype branching process. Our ap-
proach is based on a central limit theorem associated with a quadratic law
of large numbers performed by the maximum likelihood or the multidimen-
sional Lotka–Nagaev estimator of the reproduction law means. The exten-
sion of this approach to the least squares estimator of the mean matrix is also
briefly discussed.

On résout le problème de construction d’une région de confiance asymp-
totique et globale pour les moyennes et les matrices de covariance des lois
de reproduction d’un processus de branchement multitype et supercritique.
Notre approche est basée sur un théorème de limite centrale associé à une
loi forte quadratique vérifiée par l’estimateur du maximum de vraisemblance
ou l’estimateur multidimensionnel de Lotka–Nagaev des moyennes des lois
de reproduction. L’extension de cette approche à l’estimateur des moindres
carrés de la matrice des moyennes est aussi brièvement commentée.

1. Introduction.

1.1. Motivation. Statistical inference about the means and/or the covariance
matrices of the reproduction distributions involved in a positively regular supercrit-
ical Bienaymé–Galton–Watson process with d-types [BGW(d)] has been investi-
gated by several authors [2, 4, 5, 14, 26]. Though some important work (discussed
below) has been done on this topic, a satisfactory global approach has not been
outlined. The purpose of this article is to fill this gap.

For the convenience of the reader, our method is initially derived in the famil-
iar context of the one-type BGW process. So, let X = (Xn)n≥0 be a supercritical
process starting from X0 = 1. The identification of the mean a = E(X1) ∈]1,+∞[
and the variance σ 2 = Var(X1) ∈]0,+∞[ of the offspring distribution of X is a
classical problem which has been studied by many. An exhaustive review of this
topic can be found in [14].
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Let us recall some significant results in connection with this subject. The maxi-
mum likelihood estimator of a, given by

ân = (Sn−1)
−1(Sn − 1), Sn =

n∑
k=0

Xk,(1.1)

satisfies the relation

Sn−1(ân − a) =
n∑

k=1

(Xk − aXk−1) =
n∑

k=1

(
Xk − E(Xk/Fk−1)

)= Ln,(1.2)

where Fn is the σ -algebra generated by the random variables (r.v.’s) X0, . . . ,Xn.
It is strongly consistent on the set of nonextinction E = {limn→∞ Sn = ∞} =
{limn→∞ Xn = ∞}. Moreover, conditional on E, the central limit theorem (CLT)
with random normalization,√

Sn−1(ân − a)
L−→

n→∞N (0, σ 2),(1.3)

holds [11–14, 16, 17, 19–21, 23, 24]; N (0, σ 2) denotes the centered Gaussian
distribution with variance σ 2. As pointed out by Dion [13, 14], conditional on the
set En = {Xn > 0}, the result (1.3) is also true.

To build a confidence region for a, it remains to estimate σ 2. Dion [13] and
Heyde [18] proved that

σ̌ 2
n = 1

n

n∑
k=1

X−1
k−1(Xk − ǎnXk−1)

2

(1.4)

= 1

n

n∑
k=1

Xk−1(ǎk − ǎn)
2 −→

n→∞σ 2 a.s. on E,

where ǎn = X−1
n−1Xn1{Xn−1>0} is the Lotka–Nagaev estimator of a, subsequently

called the empirical estimator of a, which is also strongly consistent on E. In
addition, under the assumption E(X4

1) < ∞, they showed that

√
n(σ̌ 2

n − σ 2)
L−→

n→∞N (0,2σ 4).

We improve their result here by showing that, conditional on the set E or En,{√
n(σ−2σ̌ 2

n − 1),
√

Sn−1σ̌
−1
n (ân − a)

} L−→
n→∞N (0,2) ⊗ N (0,1)(1.5)

and

lim sup
√

n

ln lnn
|σ−2σ̌ 2

n − 1| = 2 a.s.,(1.6)

where ⊗ denote the tensor product of measures.
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A similar approach for estimating σ 2 may be derived from the following prop-
erty satisfied by the martingale (Ln), called the quadratic strong law of large num-
bers (QSL) in [8, 9] (see also [28]):

1

n

n∑
k=1

(S−1/2
k−1 Lk)

2 −→
n→∞σ 2 a.s. on E.(1.7)

From (1.2) and (1.7), it is easy to derive that

σ̂ 2
n = 1

n

n∑
k=1

Sk−1(âk − ân)
2 −→

n→∞σ 2 a.s. on E.(1.8)

We shall prove here that, under the additional hypothesis E(X4
1) < ∞ and condi-

tional on the set E, the following two properties hold:{√
n(σ−2σ̂ 2

n − 1),
√

Sn−1σ̂
−1
n (ân − a)

} L−→
n→∞ N

(
0,2

a + 1

a − 1

)
⊗ N (0,1);(1.9)

lim sup
√

n

ln lnn
|σ−2σ̂ 2

n − 1| = 2

√
a + 1

a − 1
a.s.(1.10)

Hence, the estimator σ̌ 2
n is asymptotically more efficient than σ̂ 2

n ; however, it is
insensitive to any change that occurs on the mean.

In the remainder of this article, the global approach we develop for the one-
type BGW process is generalized to the d-type case. Moreover, results analogous
to (1.8), (1.9) and (1.10) for the empirical estimator and the least squares estimator
of the reproduction law means are discussed.

1.2. Assumptions.

1.2.1. About the observed sample. From now on ∗Xn = (Xn(1), . . . ,Xn(d))

denotes the generic state of a BGW(d) process, that is, the column vector of num-
bers of particles (or individuals) of each type in the nth generation. The initial
state X0 is taken equal to the vector 1 whose components are equal to 1.

The particles of type j that are alive in the (n − 1)st generation give birth to a
total number of Yj

n(1) particles of type 1, . . . ,Yj
n(d) particles of type d . Therefore,

we have

Xn =
d∑

j=1

Yj
n, Yj

n = ∗(Yj
n(1), . . . ,Yj

n(d)
)
.(1.11)

Except in Section 5, we suppose that the r.v.’s (X0,Yj
1, . . . ,Yj

n;1 ≤ j ≤ d) are
observable and we denote by Gn the σ -algebra they generate.
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1.2.2. About the reproduction laws. The following common assumptions will
be used subsequently.

ASSUMPTION A-1. For each j ∈ {1, . . . , d}, the reproduction distribution νj

of the particle (or individual) of type j is assumed to have finite moments of or-
der 2δ (δ ∈]1,2]) and an invertible covariance matrix.

ASSUMPTION A-2. The BGW(d) process (Xn)n≥0 is assumed to be posi-
tively regular and supercritical (see [3, 25] for the details).

The column vector that represents the mean of νj and its covariance matrix are
denoted aj and Kj , respectively.

1.3. Brief description of the main results. In the three next sections we are
concerned with estimation of the parameters {aj ,Kj }1≤j≤d based on observation

of the sample {X0,Yj
k;1 ≤ k ≤ n,1 ≤ j ≤ d}. More precisely, we analyze in Sec-

tion 2 the asymptotic behavior of the maximum likelihood estimator (MLE) Ân

and the empirical estimator (EE) Ǎn of A = Vect(a1, . . . , ad) (see Section 1.4 be-
low). For each one of these estimators, we shall (1) prove strong consistency on the
set of nonextinction E and also give the strong rate of convergence, and (2) prove
asymptotic normality conditional on the set En = ⋃d

j=1{Xn(j) > 0} after appro-
priate centering and random normalization.

In Section 3 we show that Ân and Ǎn satisfy two QSLs as in the case of the
one-type BGW process. This allows us to derive two estimators K̂n and Ǩn of
K = Diag{K1, . . . ,Kd}. We prove also their strong consistency on E and sharpen
their strong rate of convergence.

The construction of a global confidence region for the parameters {aj,Kj }1≤j≤d

is achieved in Section 4 thanks to a central limit theorem performed by the pair
(Ân, K̂n) or (Ân, Ǩn).

Finally, in Section 5, a similar approach is discussed for the least squares esti-
mator (LSE) of the matrix A = [a1, . . . , ad ].

1.4. Notation. We recall some standard notation.

N1. Id and Id2 denote, respectively, the d × d and the d2 × d2 identity matrices.
N2. For a real d × d matrix B whose column vectors are b1, . . . , bd ,

Vect(B) = Vect(b1, . . . , bd)

= ∗(b1(1), . . . , b1(d), . . . , bd(1), . . . , bd(d)
) ∈ Rd2

.

N3. The notation Diag(B1,B2) refers to the block matrix
[

B1 0
0 B2

]
.

N4. If A = (ai,j )i,j and B = (br,l)r,l are two matrices, A ⊗ B = (ai,jB)i,j desig-
nates the block matrix whose (i, j) block is ai,jB .
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We also introduce the following less common notation on block matrices:

N5. If P = (P (i, j))1≤i,j≤d and Q = (Q(r, l))1≤r,l≤d are two block matrices,
then P � Q = ((P (i, j) ⊗ Q(r, l))1≤r,l≤d)1≤i,j≤d stands for the block ma-
trix whose (i, j) block is the block matrix (P (i, j) ⊗ Q(r, l))1≤r,l≤d .

N6. If C = (C(i, j))1≤i,j≤d is a block matrix, then ⊥C denotes the block matrix
(C(j, i))1≤i,j≤d .

The standard Euclidean inner product on Rq and its associated norm are denoted
by 〈·, ·〉 and ‖ · ‖, respectively. The trace operator on square matrices is denoted
by tr(·).

2. Estimation of the reproduction means. From the definition of Yj
n,

âj
n =

(
n−1∑
p=0

Xp(j)

)−1 n∑
p=1

Yj
p and ǎj

n = Xn−1(j)−1Yj
n1{Xn−1(j)>0}(2.1)

are intuitively candidates for estimating aj . Clearly, ǎ
j
n is the multidimensional

analog of the empirical estimator defined in Section 1.1. As is shown below, âj
n is in

fact the MLE of aj , that is, the estimator derived by maximizing each component
of aj .

2.1. Computation of the maximum likelihood estimator of A. Let Fn denote
the σ -algebra generated by the r.v.’s (X0,X1, . . . ,Xn). The conditional distribution
of Xn+1 with respect to Fn is ν

∗Xn(1)
1 ∗ · · · ∗ ν

∗Xn(d)
d , where ν∗k

j represents the
convolution product of k distributions equal to νj . Consequently, the following
useful construction of the Markov chain (Xn) is available. Given a probability
space (�,F ,P), let {(ξ j

n,k)(n,k)∈N2}1≤j≤d be a system of d independent sequences

of r.v.’s on (�,F ,P), where (ξ
j
n,k)(n,k)∈N2 are i.i.d. random vectors with respect

to the distribution νj . More precisely, the vector ξ
j
n,k represents the successors of

the kth particle (or individual) of type j that are alive in the (n − 1)st generation.
Hence, we have

Yj
n =

(Xn−1(j)∑
k=1

ξ
j
n,k

)
1{Xn−1(j) 
=0}, j ∈ {1, . . . , d}.(2.2)

The likelihood function of the r.v.’s {X0, . . . ,Xn} is

Ln = Ln(X0, . . . ,Xn) =
n∏

p=1

ν
∗Xp−1(1)

1 ∗ · · · ∗ ν
∗Xp−1(d)

d (Xp)

(2.3)

=
n∏

p=1

(
d∏

j=1

( ∏
l∈Dj

νj (l)
Nj

p(l)

))
,
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where for each j ∈ {1, . . . , d} the r.v.’s Nj
p(l) = ∑Xp−1(j)

k=1 1{ξj
p,k=l}, l ∈ Nd , satisfy

the properties ∑
l∈Nd

Nj
p(l) = Xp−1(j),

∑
l∈Nd

lNj
p(l) = Yj

p,

and for 1 ≤ j ≤ d , Dj = {l ∈ Nd/νj (l) > 0} is the support of the reproduction
distribution νj . Therefore, using the Lagrangian technique, we prove that the r.v.’s

ν̂j (l)n =
(

n−1∑
p=0

Xp(j)

)−1 n∑
p=1

Nj
p(l), l ∈ Dj ,(2.4)

maximize Ln, but we emphasize the fact that ν̂j (l)n is an estimator of νj (l) only if

the r.v.’s (ξ
j
n,k) are observable. However, the MLE of the mean aj of νj , obtained

by maximizing each component of aj , that is,

∑
l∈Nd

lν̂j (l)n =
(

n−1∑
p=0

Xp(j)

)−1 n∑
p=1

Yj
p,(2.5)

coincides with â
j
n . It is a statistic of the observed sample {X0,Yj

1, . . . ,Yj
n,1 ≤

j ≤ d}. Hence, the MLE of A is

Ân = Vect(â1
n, . . . , â

d
n ) = S−1

n−1

n∑
p=1

Vect(Y1
p, . . . ,Yd

p),(2.6)

where Sn = Diag(Sn(1)Id, . . . ,Sn(d)Id) and Sn−1(j) =∑n−1
p=0 Xp(j).

In particular, let us remark that

Sn−1(Ân − A) =
n∑

k=1

ζk, where ζk = Vect(ζ 1
k , . . . , ζ d

k ),(2.7)

and

ζ
j
k = Yj

k − E(Yj
k/Gk−1) =

(Xk−1(j)∑
r=1

(ξ
j
k,r − aj )

)
1{Xk−1(j)>0}.

2.2. Asymptotic properties of the MLE of A.

2.2.1. Main result. The asymptotic properties of (Ân), announced in Sec-
tion 1.3 and stated below, are in fact direct consequences of those of the martingale
defined by the right-hand side of (2.7).
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THEOREM 2.1. Let X = (�,F ,P, (Xn)n≥0) be a d-multitype branching
process, starting from 1 = ∗(1, . . . ,1), whose reproduction distributions satisfy As-
sumptions A-1 and A-2. Then the following properties hold, where E designates
the set of nonextinction of X and En =⋃d

j=1{Xn(j) > 0}.
(i) The estimator (Ân) is a strongly consistent estimator of A on the set E;

more precisely,

max
1≤k≤n

‖ρk/2(Âk − A)‖2 = O(lnn) a.s. on E.

(ii) The estimator (Ân) is asymptotically normal; more precisely, conditional
on the set E or En,

S
1/2
n−1(Ân − A)

L−→
n→∞Nd2(0,K).

REMARK 2.2. The estimation of the offspring means of a supercritical mul-
titype branching process has been studied by Asmussen and Keiding [2], Keiding
and Lauritzen [22] and Nanthi [1, 26]. Their results are strictly contained in Theo-
rem 2.1.

The proof of Theorem 2.1 is based on some important asymptotic properties of
the martingale defined by (2.7), which is stated in Lemma 2.3 below.

2.2.2. Auxiliary results for the proof of Theorem 2.1. Before stating the
lemma, let us recall that Assumption A-2 allows us to affirm that the following
three conditions are satisfied by A = [a1, . . . , ad ] (the matrix whose column vec-
tors are a1, . . . , ad ):

C1. The matrix A has a maximal eigenvalue ρ > 1, which is equal to the spectral
radius of A. Moreover, the modulus of each other eigenvalue of A is strictly
less than ρ.

C2. There exist an eigenvector u = ∗(u(1), . . . , u(d)) of A and an eigenvector
v = ∗(v(1), . . . , v(d)) of ∗A (the transpose matrix of A), associated to ρ, such
that

u(j) > 0, ∀1 ≤ j ≤ d, 〈v,1〉 =
d∑

j=1

v(j) = 1,

〈u, v〉 =
d∑

j=1

u(j)v(j) = 1.

C3. If P = u∗v, then there exits a matrix R that satisfies

PR = RP, Rn = O(nd−1ρn
0
) for ρ0 ∈]0, ρ[, An = ρnP + Rn.
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Conditions C1 and C2 imply that the set of nonextinction of the BGW(d)
process (Xn), that is, E = lim sup En, where En = ⋃d

j=1{Xn(j) > 0}, is not neg-
ligible. In fact, one can prove the existence of a r.v. W such that E = {W > 0},
P(E) > 0 and the following properties hold almost surely:

(P1) ρ−n〈v,Xn〉 −→
n→∞ W, ρ−nXn −→

n→∞ Wu.

Moreover, P(W = 0) = 0 if for all 1 ≤ j ≤ d the reproduction distribution νj

belongs to a regular exponential model.
Using the obvious recursive relation

Xn = AXn−1 + εn, εn =
d∑

j=1

ζ j
n ,

condition C3, combined with the law of the iterated logarithm, allows us to prove
the following property more precisely than (P1):

(P′
1) ρ−nXn − Wu = O(

√
lnnnd−1θn) a.s. on E, where θ = (

max(ρ0,1)

ρ
).

Let (Mn) be the normalized martingale defined from the right-hand side of (2.7)
by

Mn = U−1/2K−1/2
n∑

k=1

ζk = Vect(M1
n, . . . ,Md

n),

(2.8)

Mj
n = u(j)−1/2(Kj )−1/2

n∑
k=1

ζ
j
k , U = Diag

(
u(1)Id, . . . , u(d)Id

)
.

Note that its predictable quadratic variation is

〈M〉n = Diag
(
u(1)−1Sn−1(1)Id, . . . , u(d)−1Sn−1(d)Id

)
(2.9)

= U−1/2Sn−1U
−1/2.

LEMMA 2.3. The following properties hold for the martingale (Mn), where
E, En are the sets defined above in Theorem 2.1.

(P2) We have ρ−n〈M〉n −→
n→∞

W
ρ−1Id2 a.s. on E, where W is the r.v. defined

in (P1).
(P3) We also have max1≤k≤n ‖ρ−k/2Mk‖2 = O(lnn) a.s. on E.
(P4) For t ∈ Rd2

and k ≤ n, let ϕn,k(t) = E(exp{i〈t, ρ−n/2�Mk〉}|Gk−1) and
�n(t) =∏n

k=1 ϕn,k(t), where �Mk = Mk − Mk−1. Then

�n(t) −→
n→∞ exp

{
−1

2

W
ρ − 1

‖t‖2
}

a.s. on E.
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(P5) Conditional on E or En, ρ−n/2Mn
L−→n→∞ 
((W/ρ − 1)1/2Id2) stably,

where 
(T ) is a r.v. independent of W with the same distribution as Nd2(0,T ∗T ).

PROOF OF THEOREM 2.1. To get the strong consistency of the estimator (Ân)

on E, we note from (2.7), (2.8) and (2.9) that

ρn/2(Ân − A) = ρn/2S−1
n−1U

1/2K1/2Mn

= U−1/2(ρ−n〈M〉n)−1K1/2(ρ−n/2Mn),

but thanks to properties (P2) and (P3) satisfied by the martingale M, we have

max
1≤k≤n

‖ρ−k/2Mk‖2 = O(lnn) and ρ−n〈M〉n −→
n→∞

W
ρ − 1

Id2 a.s. on E.

Hence, (i) is proved.
By (P1), we have ρ−nSn−1 −→n→∞ W

ρ−1U a.s., so property (ii) of the theorem
is a consequence of (P5), since

S
1/2
n−1(Ân − A) = (ρn/2S

−1/2
n−1 )U1/2K1/2(ρ−n/2Mn).(2.10) �

PROOF OF LEMMA 2.3. Equality (2.9) and property (P1) imply (P2), that is,

ρ−n〈M〉n = U−1/2(ρ−nSn−1)U
−1/2 −→

n→∞
W

ρ − 1
Id2 a.s. on E.

Property (P3) is obtained thanks to the following result satisfied by the r.v.’s ζn =
Vect(ζ 1

n , . . . , ζ d
n ):

ζ j
n =

Xn−1(j)∑
k=1

(ξ
j
n,k − aj )

= O
(√

Xn−1(j) ln ln Xn−1(j)
)

(2.11)

= O
(√

ρn lnn
)

on E.

In fact, (2.11) is a consequence of (P1) and the LIL property
N∑

k=1

(ξ
j
n,k − aj ) = O

(√
2N ln ln N

)
a.s.

Since we have

Mn = U−1/2K−1/2

(
n∑

k=1

ζk

)

= O

((
n∑

k=1

ρk/2

)√
lnn

)

= O
(
ρn/2

√
lnn

)
,
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then

max
1≤k≤n

‖ρ−k/2Mk‖2 = O(lnn) a.s. on E.

Let us now prove properties (P4) and (P5). For t1, . . . , td ∈ Rd, k ≤ n and t =
Vect(t1, . . . , td), we have

ϕn,k(t) = E

(
d∏

j=1

exp
{
i

〈
tj ,

1√
ρnu(j)

(Kj )−1/2ζ
j
k

〉}∣∣∣Gk−1

)
,

so

�n(t) =
n∏

k=1

ϕn,k(t)

=
d∏

j=1

[
E

(
exp

{
i

〈
tj ,

1√
ρnu(j)

(Kj )−1/2(ξ
j
1,1 − aj )

〉})]Sn−1(j)

× 1⋂n
k=1{Xk−1(j)>0}.

By noting that

�n(t) ∼
r∏

j=1

exp
{
−1

2

1

ρnu(j)
Sn−1(j)‖tj‖2

}
1⋂n

k=1{Xk−1(j)>0} a.s. on E,

we deduce that

�n(t) −→
n→∞

d∏
j=1

exp
{
−1

2

W
ρ − 1

‖tj‖2
}

= exp
{
−1

2

W
ρ − 1

‖t‖2
}

a.s. on E.

Property (P2) combined with property (P4) allows us to use Theorem 3 of [27],
which implies that, conditional on the set E = {W > 0},

(ρ−n/2Mn)
L−→

n→∞


((
W

ρ − 1

)1/2

Id2

)
stably,

where 
(T ) is a r.v. independent of W with the same distribution as Nd2(0,T ∗T ).
As in [12], we can affirm that the above result is also true conditional on En. �

2.3. Asymptotic properties of the empirical estimator of A. From the defini-
tion (2.1) of ǎ

j
n , we deduce that for j = 1,2, . . . , d ,

Xn−1(j)(ǎj
n − aj ) =

Xn−1(j)∑
k=1

(ξ
j
n,k − aj )1{Xn−1(j)>0} = ζ j

n .
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Hence, setting Xn = Diag(Xn(1)Id, . . . ,Xn(d)Id), the empirical estimator Ǎn

of A satisfies the relations

Xn−1(Ǎn − A) = ζn and Sn−1(Ân − A) =
n∑

k=1

Xk−1(Ǎk − A).(2.12)

So property (i) of Theorem 2.1 holds for Ǎn. An analogous result of property (ii)
of this theorem may also be stated.

3. Estimation of the reproduction covariance matrices.

3.1. Some asymptotic properties of the sequences (S
1/2
n−1(Ân − A)) and

(X
1/2
n−1(Ǎn − A)). As announced in Section 1.3, the key tool for construct-

ing a strong estimator of the covariance matrices K = Diag(K1, . . . ,Kd) is
the QSL that underlies the CLT satisfied by the sequence (S

1/2
n−1(Ân − A)) or

(X
1/2
n−1(Ǎn − A)). This property is stated in the second part of the next theorem.

THEOREM 3.1. Within the framework of Theorem 2.1, the sequence (S
1/2
n−1 ×

(Ân − A)) or (X
1/2
n−1(Ǎn − A)) satisfies the following properties almost surely

on E.

(iii) ASCLT:

1

n

n∑
k=1

δ
S

1/2
k−1(Âk−A)

�⇒
n→∞ Nd2(0,K),

1

n

n∑
k=1

δ
X

1/2
k−1(Ǎk−A)

�⇒
n→∞ Nd2(0,K)

(�⇒ denotes the weak convergence of measures).
(iv) QSL:

1

n

n∑
k=1

S
1/2
k−1(Âk − A)∗(Âk − A)S

1/2
k−1 −→

n→∞ K,

1

n

n∑
k=1

X
1/2
k−1(Ǎk − A)∗(Ǎk − A)X

1/2
k−1 −→

n→∞ K.

Moreover, if the reproduction distributions have finite moments of order 4, then
(v) LIL of the QSL:

lim sup

√(
n

ln lnn

)∣∣∣∣∣1n
n∑

k=1

‖K−1/2S
1/2
k−1(Âk − A)‖2 − d2

∣∣∣∣∣= 2d

√
ρ + 1

ρ − 1
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and

lim sup

√(
n

ln lnn

)∣∣∣∣∣1n
n∑

k=1

‖K−1/2X
1/2
k−1(Ǎk − A)‖2 − d2

∣∣∣∣∣= 2d.

3.2. Construction of two strong estimators of K . Using property (iv), we con-
struct two strong consistent estimators of K as stated in the theorem below.

THEOREM 3.2. Within the framework of Theorem 2.1, let

K̂j
n = 1

n

n∑
k=1

Sk−1(j)(â
j
k − âj

n)∗(âj
k − âj

n), j = 1, . . . , d and

K̂n = Diag(K̂1
n, . . . , K̂d

n );

Ǩj
n = 1

n

n∑
k=1

Xk−1(j)(ǎ
j
k − ǎj

n)∗(ǎj
k − ǎj

n), j = 1, . . . , d and

Ǩn = Diag(Ǩ1
n, . . . , Ǩd

n ).

(vi) Then on the set of nonextinction E,

K̂n −→
n→∞K a.s., Ǩn −→

n→∞K a.s.

(vii) Moreover, if the reproduction distributions have finite moments of order 4,
then

lim sup
√

n

ln lnn
| tr(K−1/2K̂nK

−1/2) − d2| = 2d

√
ρ + 1

ρ − 1
a.s.,

lim sup
√

n

ln lnn
| tr(K−1/2ǨnK

−1/2) − d2| = 2d a.s.

REMARK 3.3. In [26], Nanthi proposed an estimator of a generic element
of Kj by adapting the Dion [13] and Heyde [18] method for estimating the vari-
ance of the offspring distribution of a BGW process (see Section 1.1).

Let us first prove Theorem 3.2.

PROOF OF THEOREM 3.2. We only prove the results announced for
the sequence (S

1/2
n−1(Ân − A)), because those corresponding to the sequence

(X
1/2
n−1(Ǎn − A)) can be established in the same way.
By the property (iv) of Theorem 3.1, we can affirm that, for all 1 ≤ j ≤ d ,

1

n

n∑
k=1

Sk−1(j)(â
j
k − aj )∗(âj

k − aj ) −→
n→∞Kj a.s. on E.
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Since almost surely on E

max
1≤k≤n

‖Sk−1(j)1/2(â
j
k − aj )‖2 = O

(
max

1≤k≤n
‖S1/2

k−1(Âk − A)‖2
)

= O(lnn)

and
n∑

k=1

Sk−1(j) = O
(
Sn−1(j)

)
both hold, we deduce that almost surely on E,

1

n

(
n∑

k=1

Sk−1(j)

)
‖âj

n − aj‖2 = O

(
lnn

n

)
and

1

n

(
n∑

k=1

Sk−1(j)‖âj
k − aj‖

)
‖âj

n − aj‖

≤ 1

n

(
n∑

k=1

√
Sk−1(j) max

1≤r≤n

√
Sr−1(j)‖âj

r − aj‖
)
‖âj

n − aj‖ = O

(
lnn

n

)
.

However, the estimator K̂
j
n satisfies the equality

K̂j
n − 1

n

n∑
k=1

Sk−1(j)(â
j
k − aj )∗(âj

k − aj )

= −1

n

(
n∑

k=1

Sk−1(j)(â
j
k − aj )

)
∗(âj

n − aj )

− 1

n
(âj

n − aj )

(
n∑

k=1

Sk−1(j)∗(âj
k − aj )

)

+ 1

n

(
n∑

k=1

Sk−1(j)

)
(âj

n − aj )∗(âj
n − aj );

(viii) hence

K̂n − K = 1

n

n∑
k=1

S
1/2
k−1(Âk − A) ∗(Âk − A)S

1/2
k−1 − K + O

(
lnn

n

)
a.s. on E.

This property shows the strong consistency of K̂n on E. Moreover, combined
with property (v) of Theorem 3.1, it allows us to affirm that assertion (vii) of The-
orem 3.2 is also true for K̂n. �

The proof of Theorem 3.1 becomes simple thanks to the next results, which
establish that properties (iii), (iv) and (v) are in fact the transcriptions of analo-
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gous ones satisfied by the normalized martingale (ρ−n/2Mn) or the sequence (ζn)

related to (Mn) by

ζn = Vect(ζ 1
n , . . . , ζ d

n ), ζ j
n =

√
u(j)(Kj )1/2�Mj

n.(3.1)

Note that

E(ζn/Gn−1) = 0 and E(ζn
∗ζn/Gn−1) = X

1/2
n−1KX

1/2
n−1.(3.2)

3.3. Auxiliary results for the proof of Theorem 3.1.

LEMMA 3.4. For the sequences (Mn) and (ζn), defined, respectively, by
(2.8) and (3.1), the following properties hold almost surely on E.

(P6) ASCLT:

1

n

n∑
k=1

δρ−k/2Mk
�⇒
n→∞ 


((
W

ρ − 1

)1/2

Id2

)
,

1

n

n∑
k=1

δ
X

−1/2
k−1 ζk

�⇒
n→∞ 
(K),

where 
(X) is a Gaussian r.v. as in property (P5).
(P7) QSL:

1

n

n∑
k=1

ρ−k(Mk
∗Mk − 〈M〉k) −→

n→∞ 0,

so
1

n

n∑
k=1

ρ−kMk
∗Mk −→

n→∞
W

ρ − 1
Id2,

1

n

n∑
k=1

X
−1/2
k−1 (ζk

∗ζk − X
1/2
k−1KX

1/2
k−1)X

−1/2
k−1 −→

n→∞ 0,

so
1

n

n∑
k=1

X
−1/2
k−1 ζk

∗ζkX
−1/2
k−1 −→

n→∞K.

Moreover, if the reproduction distributions have finite moments of order 4, then:
(P8) LIL of the QSL:

lim sup

√(
n

ln lnn

)∣∣∣∣∣1n
n∑

k=1

ρ−k tr(Mk
∗Mk − 〈M〉k)

∣∣∣∣∣= (ρ + 1)1/22dW
(ρ − 1)3/2 ,

lim sup

√(
n

ln lnn

)∣∣∣∣∣1n
n∑

k=1

tr
(
K−1/2X

−1/2
k−1 (ζk

∗ζk − X
1/2
k−1KX

1/2
k−1)

× X
−1/2
k−1 K−1/2)∣∣∣∣∣= 2d.
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The proof of this lemma, except property (P8), is postponed to Appendix A.
Property (P8) is proved at the end of Appendix B.

LEMMA 3.5. Within the framework of the Theorem 2.1:

(ix) The properties

n∑
k=1

S
1/2
k−1(Âk − A)∗(Âk − A)S

1/2
k−1

= nK +
(

ρ − 1

W

)
K1/2

(
n∑

k=1

ρ−k(Mk
∗Mk − 〈M〉k)

)
K1/2 + o(n1/2),

n∑
k=1

X
1/2
k−1(Ǎk − A)∗(Ǎk − A)X

1/2
k−1

= nK +
n∑

k=1

X
−1/2
k−1 (ζk

∗ζk − X
1/2
k−1KX

1/2
k−1)X

−1/2
k−1

hold almost surely on E.
(x) Consequently,

n∑
k=1

‖K−1/2S
1/2
k−1(Âk − A)‖2 − nd2

=
(

ρ − 1

W

) n∑
k=1

ρ−k tr(Mk
∗Mk − 〈M〉k) + o(n1/2),

n∑
k=1

‖K−1/2X
1/2
k−1(Ǎk − A)‖2 − nd2

=
n∑

k=1

tr
(
K−1/2X

−1/2
k−1 (ζk

∗ζk)X
−1/2
k−1 K−1/2 − Id2

)
.

This lemma is proved in Appendix A.

PROOF OF THEOREM 3.1. We only prove the results announced for the mar-
tingale (Mn) because the results that correspond to the sequence (ζn) can be ob-
tained in the same way.

The property ρ−n〈M〉n −→n→∞ W
ρ−1 Id2 a.s. on E, combined with the ASCLT

satisfied by M [see (P6)], implies that, conditional on the set of nonextinction E,

1

n

n∑
k=1

δ(ρ−k/2Mk,ρ
−k〈M〉k) �⇒

n→∞ µ ⊗ δC a.s.,
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where µ is the law of the r.v. 
(( W
ρ−1)1/2Id2) and C = ( W

ρ−1)Id2 is the almost-sure

limit of (ρ−k〈M〉k) on E. Hence we deduce property (iii) of the theorem for (Mn)

thanks to (2.7), (2.8) and (2.9).
Property (iv) for (Mn) is a consequence of the QSL satisfied by the martin-

gale M [see (P7)] and the relation (ix) of Lemma 3.5.
Likewise, the LIL stated in the theorem, for the sequence (Sn−1(Ân − A)),

is a consequence of the LIL satisfied by (Mn) [see (P8)] and the relation (x) of
Lemma 3.5. �

4. Asymptotic confidence region for the parameters {aj ,Kj }j . Our goal
here is to construct an asymptotic confidence region for all the parameters
{aj ,Kj }1≤j≤d . The key tool is the CLT stated below for the pair of estimators
(Ân, K̂n) and (Ân, Ǩn).

4.1. Central limit theorem for the pair of estimators (Ân, K̂n) and (Ân, Ǩn).
The proof of the next theorem, based on some probabilistic results performed by
the sequences (Mn) and (ζn), is postponed to the end of Section 4.

THEOREM 4.1. Let X = (�,F ,P,F, (Xn)n≥0) be a d-multitype branching
process, starting from 1 = ∗(1, . . . ,1). We assume that its reproduction distribu-
tions satisfy Assumption A-1 with δ = 2 and also Assumption A-2. Then, condi-
tional on the set E or En:

(xi) We have{√
n(K̂n − K),S

1/2
n−1(Ân − A)

} L−→
n→∞

{
G1

(√
2

ρ − 1
K

)
+ G2(K),G

}
,

{√
n(Ǩn − K),S

1/2
n−1(Ân − A)

} L−→
n→∞ {G2(K),G},

where G is a r.v. distributed as Nd2(0,K) and, for T = Diag(T 1, . . . , T d),
(Gr (T ))r∈{1,2} are independent identically distributed Gaussian matrices, which
are also independent of G. Moreover the covariance matrix of Vect(Gr (T )) is
equal to

Diag
(
T j ⊗ T j +⊥ (

Vect(T j )∗ Vect(T j )
);1 ≤ j ≤ d

)
.

(xii) We also have{√
n
(
tr(K−1/2K̂nK

−1/2) − d2),S1/2
n−1(Ân − A)

}
L−→

n→∞N

(
0,2d2 ρ + 1

ρ − 1

)
⊗ Nd2(0,K),

{√
n
(
tr(K−1/2ǨnK

−1/2) − d2),S1/2
n−1(Ân − A)

}
L−→

n→∞N (0,2d2) ⊗ Nd2(0,K).
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4.2. Construction of confidence regions. From property (xii), and the fact that

〈Xn,1〉
〈Xn,1〉 + 2〈Sn−1,1〉 −→

n→∞
ρ − 1

ρ + 1
a.s. on E,(4.1)

we deduce the following result, which allows us to construct an asymptotic confi-
dence region for all the parameters {aj ,Kj }1≤j≤d .

THEOREM 4.2. Conditional on the set E or En:

(xiii) We have{√
n〈Xn,1〉

2d2(〈Xn,1〉 + 2〈Sn−1,1〉)
(

d∑
j=1

tr
(
(Kj )−1/2K̂j

n (Kj )−1/2)− d2

)
,

d∑
j=1

Sk−1(j)‖(K̂j
n )−1/2(â

j
k − aj )‖2

}

L−→
n→∞N (0,1) ⊗ χ(d2),{√
n

2d2

(
d∑

j=1

tr
(
(Kj )−1/2Ǩj

n (Kj )−1/2)− d2

)
,

d∑
j=1

Sk−1(j)‖(Ǩj
n )−1/2(â

j
k − aj )‖2

}

L−→
n→∞N (0,1) ⊗ χ(d2),

where χ(d2) denote the chi-square distribution with d2 degrees of freedom.

REMARK 4.3. Let {aj
0 ,K

j
0 }1≤j≤d be a given possible structure of the repro-

duction means and covariance matrices. From Theorem 4.2 one can easily derive
an asymptotic test of the hypothesis {aj ,Kj }1≤j≤d = {aj

0 ,K
j
0 }1≤j≤d against the

alternative {aj ,Kj }1≤j≤d 
= {aj
0 ,K

j
0 }1≤j≤d .

4.3. Auxiliary results for the proof of Theorem 4.1.

4.3.1. The CLT of the QSL satisfied by (Mn) or (ζn). For the QSL satisfied
by the martingale (Mn) or the sequence (ζn), that is, property (P7), the rate of
the weak convergence is given by the following technical lemma, which will be
established in Appendix B.

LEMMA 4.4. If the assumptions of Theorem 4.1 are satisfied, then conditional
on the set E or En:
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(P9) We have{
1√
n

n∑
k=1

ρ−k(Mk
∗Mk − 〈M〉k), ρ−n/2Mn

}

L−→
n→∞

{

1

((
2W2

(ρ − 1)3

)1/4

Id

)
+ 
2

(√
W

ρ − 1
Id

)
,


((
W

ρ − 1

)1/2

Id2

)}
,

{
1√
n

n∑
k=1

K−1/2X
−1/2
k−1 (ζk

∗ζk − X
1/2
k−1KX

1/2
k−1)X

−1/2
k−1 K−1/2, ρ−n/2Mn

}

L−→
n→∞

{

2(Id),


((
W

ρ − 1

)1/2

Id2

)}
,

where W, 
(·) are r.v.’s as in property (P5) and (
r(T ))r∈{1,2} are independent
identically distributed Gaussian matrices, which are also independent of the pair
(W,
(·)). The covariance matrix of Vect(
r(T )) is equal to

(T ⊗ T ) ⊗ (T ⊗ T ) + ⊥(VectT ∗VectT ) � ⊥(VectT ∗VectT ).

(P′
9) In particular,{[

1√
n

n∑
k=1

ρ−k(Mj
k
∗Mj

k − 〈Mj 〉k)
]

1≤j≤d

, ρ−n/2Mn

}

L−→
n→∞

{[



j
1

( √
2W

(ρ − 1)3/2 Id

)
+ 


j
2

(
W

ρ − 1
Id

)]
1≤j≤d

,




((
W

ρ − 1

)1/2

Id2

)}
{[

1√
n

n∑
k=1

Xk−1(j)−1(Kj )−1/2(ζ j
k

∗ζ j
k − Xk−1(j)Kj )(Kj )−1/2

]
1≤j≤d

,

ρ−n/2Mn

}

L−→
n→∞

{
[
j

2 (Id)]1≤j≤d,


((
W

ρ − 1

)1/2
Id2

)}
,

where {
j
r (T ),1 ≤ j ≤ d, r ∈ {1,2}} are independent identically distributed

Gaussian matrices, which are also independent of the pair (W,
(·)). The co-
variance matrix of Vect(
j

r (T )) is equal to T ⊗ T + ⊥(VectT ∗VectT ).
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(P10) Moreover,{
1√
n

n∑
k=1

ρ−k tr(Mk
∗Mk − 〈M〉k), ρ−n/2Mn

}

L−→
n→∞

{(
2W2d2(ρ + 1)

(ρ − 1)3

)1/2

G,


((
W

ρ − 1

)1/2

Id2

)}
,{

1√
n

n∑
k=1

tr
(
K−1/2X

−1/2
k−1 (ζk

∗ζk − X
1/2
k−1KX

1/2
k−1)X

−1/2
k−1 K−1/2), ρ−n/2Mn

}

L−→
n→∞

{√
2dG,


((
W

ρ − 1

)1/2

Id2

)}
,

where G is a standard Gaussian r.v., which is independent of the pair {W,
(·)}.

4.3.2. The CLT of the QSL satisfied by (Ân) and (Ǎn). Combined with
Lemma 3.5, the previous result allows us to establish the following one.

LEMMA 4.5. If the assumptions of Theorem 4.1 are satisfied, then conditional
on E or En:

(xiv) We have{√
n(ρ − 1)

(
1

n

n∑
k=1

K−1/2S
1/2
k−1(Âk − A)∗(Âk − A)S

1/2
k−1K

−1/2 − Id2

)
,

S
1/2
n−1(Ân − A)

}
L−→

n→∞
{

1(2

1/4Id) + 
2
(
(ρ − 1)1/4Id

)
,G

}
,{√

n

(
1

n

n∑
k=1

K−1/2X
1/2
k−1(Ǎk − A)∗(Ǎk − A)X

1/2
k−1K

−1/2 − Id2

)
,

S
1/2
n−1(Ân − A)

}
L−→

n→∞{
2(Id),G},
where G is a r.v. distributed as Nd2(0,K) and (
r(T ))r∈{1,2} are independent
identically distributed Gaussian matrices, which are also independent of G. The
covariance matrix of Vect(
r(T )) is equal to

(T ⊗ T ) ⊗ (T ⊗ T ) + ⊥(VectT ∗VectT ) � ⊥(VectT ∗VectT ).
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(xv) We also have{√
n(ρ − 1)

(ρ + 1)

(
1

n

n∑
k=1

‖K−1/2S
1/2
k−1(Âk − A)‖2 − d2

)
,S

1/2
n−1(Ân − A)

}
L−→

n→∞N (0,2d2) ⊗ Nd2(0,K),{√
n

(
1

n

n∑
k=1

‖K−1/2X
1/2
k−1(Ǎk − A)‖2 − d2

)
,S

1/2
n−1(Ân − A)

}
L−→

n→∞N (0,2d2) ⊗ Nd2(0,K).

PROOF OF THEOREM 4.1. To prove property (xi) of the theorem for the se-
quence (K̂n), first of all we observe, thanks to property (ix) of Lemma 3.5, that
for 1 ≤ j ≤ d ,

n1/2

{
(Kj )−1/2

(
1

n

n∑
k=1

Sk−1(j)(â
j
k − aj )∗(âj

k − aj )

)
(Kj )−1/2 − Id

}

= n1/2

{(
1

n

n∑
k=1

(
Sk−1(j)−1u(j)

)
Mj

k
∗Mj

k

)
− Id

}
(4.2)

= n1/2

(
1

n

n∑
k=1

(
Sk−1(j)−1u(j)

)
(Mj

k
∗Mj

k − 〈Mj 〉k)
)

=
(

W
ρ − 1

)−1

n1/2

{
1

n

n∑
k=1

ρ−k(Mj
k
∗Mj

k − 〈Mj 〉k)
}

+ �n(j),

where �n(j) −→
n→∞ 0 a.s. on E. Hence, according to property (P′

9) of Lemma 4.4,

we can affirm that conditional on E or En,{[√
n

(
1

n

n∑
k=1

Sk−1(j)(â
j
k − aj )∗(âj

k − aj ) − Kj

)]
j≤d

,S
1/2
n−1(Ân − A)

}
(4.3)

L−→
n→∞

{[



j
1

(√
2

ρ − 1
Kj

)
+ 


j
2 (Kj )

]
j≤d

,G

}
,

where G is a r.v. distributed as Nd2(0,K), independently of the r.v.’s 

j
r (T ), 1 ≤

j ≤ d , r ∈ {1,2}, defined as in (P′
9).

Now, we notice that we can replace 1
n

∑n
k=1 Sk−1(j)(â

j
k − aj )∗(âj

k − aj ) by K̂
j
n
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in (4.3), because we have

√
n

∣∣∣∣∣1n
n∑

k=1

Sk−1(j)(â
j
k − aj )∗(âj

k − aj ) − K̂j
n

∣∣∣∣∣= O

(
1√
n

lnn

)
(4.4)

a.s. on E,

thanks to property (viii) stated in the proof of Theorem 3.2. Hence, conditional
on E or En, we get the property{[√

n(K̂j
n − Kj)

]
j≤d,S

1/2
n−1(Ân − A)

}
L−→

n→∞

{[



j
1

((
2

ρ − 1

)1/4

Kj

)
+ 


j
2 (Kj )

]
j≤d

,G

}
,

which implies that{√
n(ρ − 1)(K̂n − K),S

1/2
n−1(Ân − A)

} L−→
n→∞

{
G1

(√
2K

)+ G2
(√

ρ − 1K
)
,G

}
,

where, for T = Diag(T 1, . . . , T d), G1(T ) and G2(T ) are independent identically
distributed Gaussian matrices, which are independent of G. The covariance matrix
of VectGr (T ) is

Diag
(
T 1 ⊗ T 1 + ⊥(VectT 1∗VectT 1), . . . , T d ⊗ T d + ⊥(VectT d∗VectT d)

)
.

Property (xi) is proved.
Property (xii) of the theorem, for the sequence (K̂n), is a consequence of prop-

erty (xv) of Lemma 4.5 combined with (4.4), which implies that

√
n

(
tr(K−1/2K̂nK

−1/2) − 1

n

n∑
k=1

‖K−1/2S
1/2
k−1(Âk − A)‖2

)
= O

(
lnn√

n

)
a.s. on E.

The proofs of properties (xi) and (xii) for the sequence (Ǩn) are similar to those
of (K̂n). They are omitted for brevity. �

5. About the least squares estimator of the mean matrix. The main con-
tribution of this work is the global identification of the means and the covariance
matrices of the reproduction distribution involved in a BGW(d) process. It was
carried out thanks to the CLT of the QSL verified by the normalized estimation
errors (Sn−1(Ân − A)) or (Xn−1(Ǎn − A)), where Ân or Ǎn is, respectively,
the maximum likelihood or the empirical estimator of the reproduction law means.
One may ask if it is possible to adapt this method by considering the least squares
estimator (LSE) (see [29]) Ãn of the mean matrix A = [a1, . . . , ad ] instead of Ân

or Ǎn. This question is quite relevant if the observed sample is the set of the first
(n + 1) observations X0, . . . ,Xn.
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At the beginning, let us discuss the simple case of the BGW process. The
LSE of the mean law reproduction a [obtained by minimizing the function
a �−→∑n

k=1(Xk − aXk−1)
2] is given by

ãn = (Qn−1)
−1

(
n∑

k=1

Xk−1Xk

)
, Qn =

n∑
k=0

X2
k,(5.1)

and satisfies the relation

Qn−1(ãn − a) =
n∑

k=1

Xk−1(Xk − aXk−1)

(5.2)

=
n∑

k=1

Xk−1
(
Xk − E(Xk/Fk−1)

)= Wn.

Noting that the predictable quadratic variation of the martingale (Wn) is

〈W〉n = σ 2Tn−1 with Tn =
n∑

k=0

X3
k,

we can affirm, thanks to the martingale law of large numbers, that (ãn) is a strongly
consistent estimator of a on the set E. Moreover, conditional on the set {Xn > 0}
(resp. E), the following CLT with random normalization holds too:√

Sn−1(ãn − a)
L−→

n→∞ N (0, γ 2),

(5.3) √
Tn−1Qn−1(ãn − a)

L−→
n→∞ N (0, σ 2),

where γ 2 = ((a + 1)2/(a2 + a + 1))σ 2 > σ 2.
The QSL associated with this CLT allows us to prove that

σ̃ 2
n = n−1

n∑
k=1

Tk−1Q2
k−1(ãk − ãn)

2 −→
n→∞σ 2 a.s. on E.(5.4)

Using a CLT stated in [8], we have an analogous result to (1.5), which is{√
n(a3 − 1)

2(a3 + 1)

((
σ̃n

σ

)2

− 1
)
,

√
Sn−1

σ̃ 2
n

(ân − a)

}
L−→

n→∞N (0,1) ⊗ N (0,1).(5.5)

Obviously, the estimators (ân, σ̃
2
n ) are better than (ãn, σ̂

2
n ). However, as stated be-

fore, for the BGW(d) process, the maximum likelihood or the empirical estimator
of the reproduction mean matrix A is not a function of the first (n+1) observations
of the process, but is a function of a much richer sample drawn from the underly-
ing tree generated by this process. So it is interesting to study the properties of the
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LSE (Ãn) of A because it is a statistic of the basic sample (X0, . . . ,Xn). More pre-
cisely, Ãn (calculated by minimizing the function A �−→ ∑n

k=1 ‖Xk − AXk−1‖2)
is a solution of the linear system

Ãn

(
n∑

k=1

Xk−1
∗Xk−1

)
=

n∑
k=1

Xk
∗Xk−1.

It is more convenient to define Ãn by the algorithm

Ãn+1 = Ãn + (Xn+1 − ÃnXn)
∗XnQ−1

n , where Qn = Id +
n∑

k=1

Xk
∗Xk.(5.6)

Hence, Ãn satisfies the relation analogous to (5.2),

(Ãn − A)Qn−1 =
d∑

j=1

Wj
n, where Wj

n =
n∑

k=1

Xk−1
∗ζ j

k .(5.7)

The global approach discussed before for the one-type BGW can be generalized
successfully to the d-type case. For this purpose, we need to add to Assumptions
A-1 and A-2:

ASSUMPTION A-3. Every nonprincipal eigenvalue λ of A satisfies |λ|2 > ρ.
Moreover, A is nonderogatory.

The last word means that the minimal and characteristic polynomials of A are
proportional.

Under Assumption A-2 and the first part of Assumption A-3, it was proved by
Carvalho [5] that there exists a r.v. η that satisfies the property

A−nXn −→
n→∞η a.s. (and also in mean square).(5.8)

Moreover, when we add the second part of Assumption A-3, we get the important
property (stated also in [5]):

On the set of nonextinction E, the d × d matrix whose
column vectors are [A−1η, . . . ,A−dη] is invertible.

(5.9)

As a direct consequence of (5.9), the excitation Qn of X satisfies the result

A−nQn−1
∗A−n −→

n→∞ C a.s. on E,

where C =∑∞
n=1 A−nη ∗η ∗A−n is a.s. invertible on E.

By adapting to the martingale

M̃n = ∗(Vect(W1
n), . . . ,Vect(Wd

n)
)

the tools used before for (Mn), similar results to those proved for the MLE Ân

(or the EE Ǎn) are available for Ãn = Vect(Ãn). Details are intentionally omitted
for brevity.
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Conclusion. A natural question remains: What is the best estimator of the
variance? The answer to this question is part of a thesis in preparation.

APPENDIX A: PROOFS OF LEMMAS 3.4 AND 3.5

PROOF OF LEMMA 3.4. The ASCLT satisfied by (Mn) or (ζn) has been
proved in [10]. Property (P7) for the martingale (Mn) is a special case of The-
orem 3.1 in [8]. Property (P8) for the martingale (Mn) is proved at the end of
Appendix B. The proofs of the properties (P7) and (P8) for the sequence (ζn) are
similar to those for (Mn). They are omitted for brevity. �

PROOF OF LEMMA 3.5. To prove property (ix) of the lemma, we note that

n−1/2
n∑

k=1

(
K−1/2S

1/2
k−1(Âk − A)∗(Âk − A)S

1/2
k−1K

−1/2 − Id2
)

= n−1/2
n∑

k=1

(ρkUS−1
k−1)

1/2ρ−k(Mk
∗Mk − 〈M〉k)(ρkUS−1

k−1)
1/2(A.1)

=
(

W
ρ − 1

)−1

n−1/2
n∑

k=1

ρ−k(Mk
∗Mk − 〈M〉k) + �n,

where

�n = n−1/2
n∑

k=1

(
(ρkUS−1

k−1)
1/2 −

(
W

ρ − 1

)−1/2

Id2

)

× ρ−k(Mk
∗Mk − 〈M〉k)

(
(ρkUS−1

k−1)
1/2 −

(
W

ρ − 1

)−1/2

Id2

)

+
(

W
ρ − 1

)−1/2

n−1/2
n∑

k=1

(
(ρkUS−1

k−1)
1/2 −

(
W

ρ − 1

)−1/2

Id2

)
× ρ−k(Mk

∗Mk − 〈M〉k)

+
(

W
ρ − 1

)−1/2

n−1/2
n∑

k=1

ρ−k(Mk
∗Mk − 〈M〉k)

×
(
(ρkUS−1

k−1)
1/2 −

(
W

ρ − 1

)−1/2

Id2

)
.

Let us show that almost surely on E,

�n −→
n→∞ 0.(A.2)
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Properties (P2) and (P3) imply ρ−n‖Mn
∗Mn −〈M〉n‖ = O(lnn) = o(n) a.s. on E,

so

�n = O

(
n−1/2

n∑
k=1

k

∥∥∥∥(ρkUS−1
k−1)

1/2 −
(

W
ρ − 1

)−1/2

Id2

∥∥∥∥∥
2)

+ O

(
n−1/2

n∑
k=1

k

∥∥∥∥(ρkUS−1
k−1)

1/2 −
(

W
ρ − 1

)−1/2

Id2

∥∥∥∥
)

(A.3)

a.s. on E.

To end the proof of (A.2), we need the following result, which is a direct conse-
quence of property (P′

1): For some real θ ∈]0,1[,∥∥∥∥ρ−kSk−1 − 1

ρ − 1
WU

∥∥∥∥= O
(√

lnkkd−1θk) a.s. on E.(A.4)

This implies that almost surely on E,∥∥∥∥(ρkUS−1
k−1)

1/2 −
(

W
ρ − 1

)−1/2

Id2

∥∥∥∥= O
(√

lnkkd−1θk).
Therefore, the series

∞∑
k=1

√
k

∥∥∥∥(ρkUS−1
k−1)

1/2 −
(

W
ρ − 1

)−1/2

Id2

∥∥∥∥2

and
∞∑

k=1

√
k

∥∥∥∥(ρkUS−1
k−1)

1/2 −
(

W
ρ − 1

)−1/2

Id2

∥∥∥∥
are a.s. convergent on E. By the Kronecker lemma, almost surely on E,

n∑
k=1

k

∥∥∥∥(ρkUS−1
k−1)

1/2 −
(

W
ρ − 1

)−1/2

Id2

∥∥∥∥2

+
n∑

k=1

k

∥∥∥∥(ρkUS−1
k−1)

1/2 −
(

W
ρ − 1

)−1/2

Id2

∥∥∥∥= o
(√

n
);

hence (A.2) is proved thanks to (A.3).
Since property (x) is an immediate consequence of (ix), Lemma 3.5 is proved

for (S
1/2
n−1(Ân − A)).

The proofs of properties (ix) and (x) for (X
1/2
n−1(Ǎn − A)) are similar to those

for (S
1/2
n−1(Ân − A)). They are omitted for brevity. �
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APPENDIX B: PROOFS OF LEMMA 4.4 AND PROPERTY (P8)

PROOF OF LEMMA 4.4. The long and technical proof below is carried in
several steps. These steps are intentionally detailed in a way so that results on the
sequence (ζn) appear to be contained in those on the martingale (Mn); hence the
proof will be focused on (Mn).

STEP 1—Preliminary calculus. Let

Zn =
n∑

k=1

ρ−k(Mk
∗Mk − 〈M〉k),

(B.1)

Žn =
n∑

k=1

K1/2X
−1/2
k−1 (ζk

∗ζk − X
1/2
k−1KX

1/2
k−1)X

−1/2
k−1 K−1/2

be the random block matrices whose blocks of indexes i and r , 1 ≤ i, r ≤ d , are

Zn(i, r) =
n∑

k=1

ρ−k(Mi
k
∗Mr

k − 〈Mi ,Mr〉k),

Žn(i, r) =
n∑

k=1

(
Xk−1(i)

−1/2Xk−1(r)
−1/2(Ki)−1/2ζ i

k
∗ζ r

k (Kr)−1/2 − Id

)
.

To prove property (P9), we need the decomposition

Zn(i, r) =
(

ρ

ρ − 1

) n∑
k=1

(
1

ρk
− 1

ρk+1

)
(Mi

k
∗Mr

k − 〈Mi ,Mr〉k)

=
(

ρ

ρ − 1

) n∑
k=1

ρ−k(Mi
k−1

∗(�Mr
k) + (�Mi

k)
∗Mr

k−1
)

+
(

ρ

ρ − 1

) n∑
k=1

ρ−k((�Mi
k)

∗(�Mr
k) − E

(
(�Mi

k)
∗(�Mr

k)|Gk−1
))

−
(

ρ

ρ − 1

)
ρ−(n+1)(Mi

n
∗Mr

n − 〈Mi ,Mr〉n).

From (P2) and (P3), we have

n−1/2
(

ρ

ρ − 1

)
ρ−(n+1)(Mn

∗Mn − 〈M〉n) −→
n→∞ 0 a.s. on E;

hence, (
ρ − 1

ρ

)
Zn(i, r) = Hi,r

n + H̃ i,r
n + o

(√
n
)

a.s. on E,(B.2)
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where for 1 ≤ i, r ≤ d ,

Hi,r
n =

n∑
k=1

ρ−k(Mi
k−1

∗(�Mr
k) + (�Mi

k)
∗Mr

k−1
)
,

H̃ i,r
n =

n∑
k=1

ρ−k((�Mi
k)

∗(�Mr
k) − E

(
(�Mi

k)
∗(�Mr

k)|Gk−1
))

= W
ρ

Žn(i, r) + O(lnn) a.s. on E.

For the study of the weak convergence of the sequence (Zn), we consider the
martingale block matrices

Hn = (H i,r
n )1≤i,r≤d, H̃n = (H̃ i,r

n )1≤i,r≤d,

Hn = Vect(Hn) = Vect(H1
n, . . . ,Hd2

n ),

H̃n = Vect(H̃n) = Vect(H̃1
n, . . . , H̃d2

n ) and Hn =
(

Hn

H̃n

)
.

The continuation of the proof is, in particular, based on application of the classical
CLT (see [15]) to the martingale (Hn).

STEP 2—Behavior of the predictable quadratic variation of (Hn). Hereafter,
we study the asymptotic behavior of the predictable quadratic variation

〈H〉n =
( 〈H〉n 〈H , H̃〉n∗〈H , H̃〉n 〈H̃〉n

)
of Hn,

where

〈H〉n = (〈Hp,Hq〉n)p,q≤d2,

〈H̃〉n = (〈H̃p, H̃q〉n)p,q≤d2,

〈H , H̃〉n = (〈Hp, H̃q〉n)p,q≤d2 .

To determine the asymptotic behavior of (〈H〉n), the formulas below are needed,
where (e1, . . . , ed) denotes the canonical basis of Rd . For 1 ≤ r ≤ d , 1 ≤ s ≤ d ,
we note that

H(r−1)d+s
n = ∗(∗H 1,r

n es, . . . ,
∗Hd,r

n es),

H̃(r−1)d+s
n = ∗(∗H̃ 1,r

n es, . . . ,
∗H̃ d,r

n es).

Then, for p = (r − 1)d + s and q = (l − 1)d + t with 1 ≤ r, l ≤ d and 1 ≤ s, t ≤ d

fixed,

〈Hp,Hq〉n = (〈Hi,r
n es,H

j,l
n et 〉n)1≤i,j≤d,

〈Hp, H̃q〉n = (〈Hi,r
n es, H̃

j,l
n et 〉n)1≤i,j≤d,

〈H̃p, H̃q〉n = (〈H̃ i,r
n es, H̃

j,l
n et 〉n)1≤i,j≤d .
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(A) Behavior of 〈H〉n. For 1 ≤ i, j ≤ d,1 ≤ r, l ≤ d , 1 ≤ s, t ≤ d , we have
〈Hi,res,H

j,let 〉n
=

n∑
k=1

ρ−2kMi
k−1

∗Mj
k−1E(〈�Mr

k, es〉〈�Ml
k, et 〉|Gk−1)

+
n∑

k=1

ρ−2kMi
k−1〈Ml

k−1, et 〉E(〈�Mr
k, es〉∗�Mj

k |Gk−1)

+
n∑

k=1

ρ−2kE(�Mi
k〈�Ml

k, et 〉|Gk−1)〈Mr
k−1, es〉∗Mj

k−1

+
n∑

k=1

ρ−2k〈Mr
k−1, es〉〈Ml

k−1, et 〉E((�Mi
k)

∗(�Mj
k)|Gk−1

)
,

〈Hi,res,H
j,let 〉n

= 1√
u(r)u(l)

n∑
k=1

ρ−2kMi
k−1

∗Mj
k−1

∗es(K
r)−1/2E(ζ r

k
∗ζ l

k|Gk−1)(K
l)−1/2et

+ 1√
u(r)u(j)

n∑
k=1

ρ−2kMi
k−1

∗Ml
k−1et

∗es(K
r)−1/2

× E(ζ r
k

∗ζ j
k |Gk−1)(K

j )−1/2

+ 1√
u(i)u(l)

n∑
k=1

ρ−2k(Ki)−1/2E(ζ i
k
∗ζ l

k|Gk−1)(K
l)−1/2et

∗esMr
k−1

∗Mj
k−1

+ 1√
u(i)u(j)

n∑
k=1

ρ−2k∗esMr
k−1

∗Ml
k−1et (K

i)−1/2

× E(ζ i
k
∗ζ j

k |Gk−1)(K
j )−1/2.

Consequently,

〈Hi,res,H
j,let 〉n = 〈er , el〉∗eset

(
n∑

k=1

u(r)−1Xk−1(r)ρ
−2kMi

k−1
∗Mj

k−1

)

+ 〈ej , er〉
(

n∑
k=1

u(r)−1Xk−1(r)ρ
−2kMi

k−1
∗Ml

k−1

)
et

∗es

(B.3)

+ 〈ei, el〉
(

n∑
k=1

u(l)−1Xk−1(l)ρ
−2ket

∗esMr
k−1

∗Mj
k−1

)

+ 〈ei, ej 〉
(

n∑
k=1

u(i)−1Xk−1(i)ρ
−2k ∗esMr

k−1
∗Ml

k−1etId

)
.
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From (B.3) and the properties

ρ−(n−1)Xn−1(r) −→
n→∞ Wu(r),

(B.4)
1

n

n∑
k=1

ρ−(k−1)Mr
k−1

∗Ml
k−1 −→

n→∞

(
W

ρ − 1
Id

)
〈er , el〉 a.s. on E,

we can affirm that, almost surely on E,

1

n
〈Hi,res,H

j,let 〉n −→ 2W2

ρ2(ρ − 1)

(∗eiIdej 〈er , el〉〈es, et 〉Id + ∗ei(el
∗er)ej (et

∗es)
)
.

So, we deduce that

1

n
〈Hp,Hq〉n −→

n→∞
2W2

ρ2(ρ − 1)

(〈er , el〉〈es, et 〉Id ⊗ Id + (el
∗er) ⊗ (et

∗es)
)

a.s. on E

and

1

n
〈H〉n −→

n→∞
2W2

ρ2(ρ − 1)
{(Id ⊗ Id) ⊗ (Id ⊗ Id) + J � J} a.s. on E,

where

J = ⊥(Vect(Id)∗ Vect(Id)
)= (el

∗er)1≤r,l≤d .(B.5)

(B) Behavior of (〈H̃〉n). For 1 ≤ i, j ≤ d,1 ≤ r, l ≤ d , 1 ≤ s, t ≤ d , we have

〈H̃ i,res, H̃
j,let 〉n

=
n∑

k=1

ρ−2kE
(
(�Mi

k)
∗(�Mj

k)〈�Mr
k, es〉〈�Ml

k, et 〉|Gk−1
)

−
n∑

k=1

ρ−2kE
(
(�Mi

k)〈�Mr
k, es〉|Gk−1

)
E
(∗(�Mj

k)〈�Ml
k, et 〉|Gk−1

)
,

〈H̃ i,res, H̃
j,let 〉n

= 1√
u(i)u(r)u(j)u(l)

×
n∑

k=1

ρ−2kE
(
(Ki)−1/2ζ i

k
∗ζ j

k (Kj )−1/2

× ∗es(K
r)−1/2ζ r

k
∗ζ l

k(K
l)−1/2et |Gk−1

)
− 1√

u(i)u(r)u(j)u(l)
(B.6)
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×
n∑

k=1

ρ−2k(Ki)−1/2

× E(ζ i
k
∗ζ r

k |Gk−1)(K
r)−1/2es

∗et (K
l)−1/2E(ζ l

k
∗ζ j

k |Gk−1)(K
j )−1/2.

Consequently, if we set ξ̂ i
1,1 = (Ki)−1/2(ξ i

1,1 − aj ), then on the set {Xk−1(i) ×
Xk−1(j)Xk−1(r)Xk−1(l) 
= 0},

E
(
(Ki)−1/2ζ i

k
∗ζ j

k (Kj )−1/2∗es(K
r)−1/2ζ r

k
∗ζ l

k(K
l)−1/2et |Gk−1

)
= E

((Xk−1(i)∑
i1=1

ξ̂ i
k,i1

)
∗
(Xk−1(j)∑

j1=1

ξ̂
j
k,j1

)
∗es

(Xk−1(r)∑
r1=1

ξ̂ r
k,r1

)
∗
(Xk−1(l)∑

l1=1

ξ̂ l
k,l1

)

× et |Gk−1

)

=
Xk−1(i)∑
i1=1

Xk−1(j)∑
j1=1

Xk−1(r)∑
r1=1

Xk−1(l)∑
l1=1

�
(i,r,j,l)
(i1,r1,j1,l1)

,

where

�
(i,r,j,l)
(i1,r1,j1,l1)

= E(̂ξ i
1,i1

∗ξ̂ j
1,j1

∗es ξ̂
r
1,r1

∗ξ̂ l
1,l1

et ).

To calculate �
(i,r,j,l)
(i1,r1,j1,l1)

the following three cases must be examined:

Case 1. The four indexes i, r , j , l are equal.
Case 2. Exactly three indexes from {i, r, j, l} are equal.
Case 3. Two indexes at most from {i, r, j, l} are equal.

In Case 2, �
(i,r,j,l)
(i1,r1,j1,l1)

= 0, since for x ∈ Rd, y ∈ Rd ,

∗x�
(i,i,i,l)
(i1,r1,j1,l1)

y = E
(〈
x, ξ̂ i

1,i1

〉〈
y, ξ̂ i

1,j1

〉〈
es, ξ̂

i
1,r1

〉)
E
(〈̂
ξ l

1,l1
, et

〉)= 0.

Likewise,

∗x�
(i,i,j,i)
(i1,j1,r1,l1)

y = ∗x�
(i,r,i,i)
(i1,j1,r1,l1)

y = ∗x�
(i,r,r,r)
(i1,j1,r1,l1)

y = 0.

In Case 3, �
(i,r,j,l)
(i1,r1,j1,l1)

= 0, except perhaps in the following subcases:

(a) If (i, r, j, l) ∈ �1 = {(r, r, l, l);1 ≤ r, l ≤ d, r 
= l}, then

�
(r,r,l,l)
(i1,r1,j1,l1)

= E
(
ξ̂ r

1,i1
∗ξ̂ r

1,r1

)
es

∗etE
(
ξ̂ l

1,j1
∗ξ̂ l

1,l1

)= (es
∗et )1�1(i1, r1, j1, l1).

(b) If (i, r, j, l) ∈ �2 = {(i, r, i, r);1 ≤ i, r ≤ d, i 
= r}, then

�
(i,r,i,r)
(i1,r1,j1,l1)

= E
(
ξ̂ i

1,i1
∗ξ̂ i

1,j1

)∗esE
(
ξ̂ r

1,r1
∗ξ̂ r

1,l1

)
et = 〈es, et 〉Id1�2(i1, r1, j1, l1).
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(c) If (i, r, j, l) ∈ �3 = {(l, r, r, l);1 ≤ l, r ≤ d, l 
= r}, then

�
(l,r,r,l)
(i1,r1,j1,l1)

= E
(
ξ̂ l

1,i1
∗ξ̂ l

1,l1

)
et

∗esE
(
ξ̂ r

1,r1
∗ξ̂ r

1,j1

)= (et
∗es)1�3(i1, r1, j1, l1).

In Case 1, (i, j, r, l) ∈ �4 = {(r, r, r, r);1 ≤ r ≤ d}. Then

�
(i,j,r,l)
(i1,r1,j1,l1)

= E
(
ξ̂ r

1,i1
∗ξ̂ r

1,j1

〈
es, ξ̂

r
1,r1

〉〈
ξ̂ r

1,l1
, et

〉)
= E

(
ξ̂ r

1,1
∗ξ̂ r

1,1
〈
es, ξ̂

r
1,1
〉〈
ξ̂ r

1,1, et

〉)
1�4(i1, r1, j1, l1)

+ (es
∗et )1�1(i1, r1, j1, l1) + 〈es, et 〉Id1�2(i1, r1, j1, l1)

+ (e∗
t es)1�3(i1, r1, j1, l1).

The discussion above allows us to affirm the following statements:

if i = r = j = l,

〈H̃ i,res, H̃
j,let 〉n

= 1

u(r)2

n∑
k=1

ρ−2kXk−1(r)E(̂ξ r
1,1

∗ξ̂ r
1,1

∗es ξ̂
r
1,1

∗ξ̂ r
1,1et )

(B.7a)

+ 1

u(r)2

n∑
k=1

ρ−2kXk−1(r)
(
Xk−1(r) − 1

){∗esetId + et
∗es + es

∗et }

− 1

u(r)2

n∑
k=1

ρ−2kXk−1(r)
2{es

∗et };

if i = j 
= r = l,
(B.7b)

〈H̃ i,res, H̃
j,let 〉n = 1

u(i)u(r)

n∑
k=1

ρ−2kXk−1(i)Xk−1(r)
∗esetId;

if i = l 
= j = r,
(B.7c)

〈H̃ i,res, H̃
j,let 〉n = 1

u(l)u(r)

n∑
k=1

ρ−2kXk−1(l)Xk−1(r)et
∗es;

if (j, l) /∈ {(i, r), (r, i)}, 〈H̃ i,res, H̃
j,let 〉n = 0.(B.7d)

From properties (B.4) and (B.7a–d) it follows that, a.s. on E,

1

n
〈H̃ i,res, H̃

j,let 〉n −→
n→∞

W2

ρ2 (∗esetId + et
∗es) if i = r = j = l,

1

n
〈H̃ i,res, H̃

j,let 〉n −→
n→∞

W2

ρ2
∗esetId if i = j 
= r = l,

1

n
〈H̃ i,res, H̃

j,let 〉n −→
n→∞

W2

ρ2 et
∗es if i = l 
= r = j,
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and
1

n
〈H̃ i,res, H̃

j,let 〉n −→
n→∞ 0 if (j, l) /∈ {(i, r), (r, i)}.

Consequently,

1

n
〈H̃ i,res, H̃

j,let 〉n

−→
n→∞

W2

ρ2 〈er , el〉〈ei, er〉〈ei, ej 〉(∗esetId + et
∗es)

+ W2

ρ2

(〈er , el〉〈ei, ej 〉(1 − 〈ei, er〉)(∗esetId)

+ 〈ei, el〉〈er , ej 〉(1 − 〈ei, er〉)et
∗es

)
= W2

ρ2

(∗eiIdej 〈er , el〉〈es, et 〉Id + ∗ei(el
∗er)ej (et

∗es)
)

a.s. on E,

so

1

n
〈H̃p, H̃q〉n −→

n→∞
W2

ρ2

(〈er , el〉〈es, et 〉Id ⊗ Id + (el
∗er) ⊗ (et

∗es)
)

a.s. on E.

Finally,

1

n
〈H̃〉n −→

n→∞
W2

ρ2

(
(Id ⊗ Id) ⊗ (Id ⊗ Id) + J � J

)
a.s. on E,

where J is defined by (B.5).
(C) Behavior of (〈H , H̃〉n). For 1 ≤ i, j ≤ d,1 ≤ r, l ≤ d and 1 ≤ s, t ≤ d ,

〈Hi,res, H̃
j,let 〉n

=
n∑

k=1

ρ−2kMi
k−1E

(∗(�Mr
k)〈�Mj

k , es〉〈�Ml
k, et 〉|Gk−1

)

+
n∑

k=1

ρ−2k〈Mj
k−1, es〉E(�Mi

k
∗(�Mr

k)〈�Ml
k, et 〉|Gk−1

)
= 1√

u(r)u(j)u(l)

×
n∑

k=1

ρ−2kMi
k−1E

(∗ζ r
k (Kr)−1/2∗es(K

j )−1/2ζ
j
k

∗ζ l
k(K

l)−1/2et |Gk−1
)

+ 1√
u(r)u(i)u(l)

×
n∑

k=1

ρ−2k〈Mj
k−1, es〉E((Ki)−1/2ζ i

k
∗ζ r

k (Kr)−1/2∗ζ l
k(K

l)−1/2et |Gk−1
);
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hence,

〈Hi,res, H̃
j,let 〉n

= 1

u(r)3/2

n∑
k=1

ρ−2kXk−1(r)Mi
k−1E(∗ξ̂ r

1,1
∗es ξ̂

r
1,1

∗ξ̂ r
1,1et )1{j=l=r}

(B.8)

× 1

u(r)3/2

n∑
k=1

ρ−2kXk−1(r)
∗esMj

k−1

× E
(
(Ki)−1/2ξ̂ i

1,1
∗ξ̂ r

1,1(K
r)−1/2∗ξ̂ l

1,1(K
l)−1/2et

)
1{i=l=r}.

Consequently,

1

n
〈Hi,res, H̃

j,let 〉n −→
n→∞ 0 a.s. on E and

1

n
〈H , H̃〉n −→

n→∞ 0 a.s. on E.

STEP 3—Verification of the Lindeberg condition for the martingale H. For all
ε > 0, we have

1

n

n∑
k=1

E
(‖�Hk‖21{‖Hk‖>ε

√
n}|Gk−1

) −→
n→∞ 0 a.s. on E.

In fact, thanks to the properties

max
1≤k≤n

‖�Hk‖ = O(lnn) and max
1≤k≤n

‖�H̃k‖ = O(lnn),

which hold a.s. on E, we have

1{‖Hk+1‖+‖H̃k+1‖>ε
√

n} −→
n→∞ 0 a.s. on E.

Consequently,

1

n

n∑
k=1

E
(‖�Hk‖21{‖Hk‖>ε

√
n}|Gk−1

)

≤ 1

n

n∑
k=1

E
(‖�Hk‖21{‖Hk‖+‖H̃k ||>ε

√
n}|Gk−1

)

+ 1

n

n∑
k=1

E
(‖�H̃k‖21{‖Hk‖+‖H̃k‖>ε

√
n}|Gk−1

)

= o

(
1

n

n∑
k=1

ρ−k‖Mk‖2

)
+ o

(
1

n

n∑
k=1

E(ρ−2k‖�Mk‖4|Gk−1)

)
= o(1) a.s. on E,
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because the r.v.’s(
1

n

n∑
k=1

ρ−k‖Mk‖2

)
and

(
1

n

n∑
k=1

E(ρ−2k‖�Mk‖4|Gk−1)

)
are almost-surely bounded on E. The Lindeberg condition for (Hn) is proved.

STEP 4—Weak limit of ( 1√
n
Hn). From the classical martingale central limit

theorem [17, 27], it follows that, conditional on E,

1√
n

Hn
L−→

n→∞



1

((
2W2

ρ2(ρ − 1)

)1/4

Id

)

2

(√
W
ρ

Id

)
 ,(B.9)

where (
r(T ))r∈{1,2} are independent identically distributed Gaussian vectors,
which are also independent of the r.v. W. The covariance matrix of 
r(T ) is
equal to (T ⊗ T ) ⊗ (T ⊗ Y) + ⊥(VectT ∗ VectT ) � ⊥(VectT ∗ VectT ). Condi-
tional on En, this result remains true. �

PROOFS OF (P9) AND (P′
9). Hereafter, we use Theorem 3 of [27] to prove

a CLT for the couple of martingales (Hn,Mn). Properties (P9) and (P′
9) are conse-

quences of this result.
For the vectors x̃ = (x(r−1)d+s)1≤r,s≤d , z̃ = (z(l−1)d+t )1≤l,t≤d and y of Rd2

,
we set

H′
n =

d∑
r=1

d∑
s=1

〈
x(r−1)d+s,H(r−1)d+s

n

〉+ d∑
l=1

d∑
t=1

〈
z(l−1)d+t , H̃(l−1)d+t

n

〉
,

U
(n)
k = 1√

n
�H′

k + 〈y,ρ−n/2�Mk〉,

�n(x̃, z̃, y) = �n

((
x(r−1)d+s

)
1≤r,s≤d,

(
z(l−1)d+t

)
1≤l,t≤d, y

)
=

n∏
k=1

E
{
exp

{
i�U

(n)
k

}|Gk−1
}
,

�n(y) =
n∏

k=1

E(exp{i〈y,ρn/2�Mk〉}|Gk),

�n(x̃, z̃ ) =
n∏

k=1

E

(
exp

(
i

1√
n
�H′

k

)∣∣∣Gk−1

)
.

From the results proved in Steps 1, 2, 3 and 4, Case 3, the following classical
property holds:

�n(x̃, z̃ ) −→
n→∞�∞(x̃, z̃ ) a.s. on E,(B.10)



MULTITYPE BRANCHING PROCESSES 2689

where

�∞(x̃, z̃ )

= exp

{
−1

2

2W2

ρ2(ρ − 1)

×
(

d∑
r=1

d∑
s=1

d∑
l=1

d∑
t=1

∗x(r−1)p+s

(〈er , el〉〈es, et 〉Id ⊗ Id

+ (el
∗er) ⊗ (et

∗es)
)
x(l−1)p+t

)}
(B.11)

× exp

{
−1

2

W2

ρ2

×
(

d∑
r=1

d∑
s=1

d∑
l=1

d∑
t=1

∗z(r−1)p+s

× (〈er , el〉〈es, et 〉Id ⊗ Id

+ (el
∗er) ⊗ (et

∗es)
)
z(l−1)p+t

)}
.

We also recall property (P4), which states that

�n(y) −→
n→∞�∞(y) = exp

{
−1

2

W
(ρ − 1)

‖y‖2
}

a.s. on E.(B.12)

Now let us prove that, almost surely on E,

Rn = |�n(x̃, z̃, y) − �n(y)�n(x̃, z̃ )| −→
n→∞ 0.(B.13)

For this purpose, the following inequalities, also used in [28], are relevant:

Rn ≤ 1√
n

n∑
k=1

E(|〈y,ρ−n/2�Mk〉| × |�H′
k||Gk−1)

+ 1

4n

n∑
k=1

E(〈y,ρ−n/2�Mk〉2|Gk−1)E
(
(�H′

k)
2|Gk−1

)

≤ 1√
n

n∑
k=1

E(〈y,ρ−n/2�Mk〉2|Gk−1)
1/2E

(
(�H′

k)
2|Gk−1

)1/2

+ 1

4n

n∑
k=1

E(〈y,ρ−n/2�Mk〉2|Gk−1)E
(
(�H′

k)
2|Gk−1

)
(B.14)
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≤
(

1

n
max

1≤k≤n
E
(
(�H′

k)
2|Gk−1

))1/2
(

n∑
k=1

ρ−n ∗y�〈M〉ky
)1/2

+ 1

4n
max

1≤k≤n
E
(
(�H′

k)
2|Gk−1

) n∑
k=1

ρ−n ∗y�〈M〉ky.

In fact, thanks to the inequality∣∣∣∣∣
n∏

k=0

ak −
n∏

k=0

bk

∣∣∣∣∣≤
n∑

k=0

|bk − ak|,

which holds for |ak| ≤ 1 and |bk| ≤ 1, we have

Rn ≤
n∑

k=1

∣∣∣∣E((1 − exp{i〈y,ρ−n/2�Mk〉})
(

1 − exp
{
i

1√
n
�H′

k

})∣∣∣Gk−1

)
− E

(
(1 − exp{i〈y,ρ−n/2�Mk〉})|Gk−1

)
× E

((
1 − exp

{
i

1√
n
�H′

k

})∣∣∣Gk−1

)∣∣∣∣,
and the last quantity is less than the right-hand side of (B.14), thanks to the in-
equalities

∀x ∈ R |eix − 1| ≤ |x| and |eix − 1 − ix| ≤ x2

2
,

combined with the fact that E(�Mk|Fk−1) = E(�H′
k|Fk−1) = 0.

Because the sequence (n−1〈H′〉n) is almost-surely convergent on E, then

1

n
max

1≤k≤n
E
(
(�H′

k)
2|Gk−1

) −→
n→∞ 0 a.s. on E.

We also have
n∑

k=1

(ρ−n ∗y�〈M〉ky) = O

(
n∑

k=1

ρ−(n−k)/2

)
= O(1) a.s. on E.

Hence, property (B.13) is proved. Therefore, from (B.10) and (B.12),

�n(x̃, z̃, y) −→
n→∞�∞(x̃, z̃, y) = �∞(x̃, z̃ )�∞(y) a.s. on E.

Consequently, by Theorem 3 of [27], we can affirm that, conditional on E,{
1√
n

Hn, ρ
−n/2Mn

}
(B.15)

L−→
n→∞





1

((
2W2

ρ2(ρ − 1)

)1/4

Id

)

2

(√
W
ρ

Id

)
 ,


((
W

ρ − 1

)1/2

Id2

) ,
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where 
(·) is a r.v. as in property (P5), and (
r(·))r∈{1,2} are r.v.’s independent of
the pair (W,
(·)) and distributed as in (B.9). Since property (B.15) is also valid
conditional on En, property (P9) for the martingale (Mn) follows from (B.15).

According to (B.2), (B.15) implies that, conditional on E or En,{[
1√
n

n∑
k=1

ρ−k(Mi
k
∗Mi

k − 〈Mi〉k)
]

1≤i≤d

, ρ−n/2Mn

}

L−→
n→∞

{[

i

1

( √
2W

(ρ − 1)3/2 Id

)
+ 
i

2

(
W

ρ − 1
Id

)]
1≤i≤d

,


((
W

ρ − 1

)1/2

Id2

)}
,

where {
i
r(T );1 ≤ i ≤ d, r ∈ {1,2}} are independent identically distributed

Gaussian matrices, which we can choose independently of the pair (W,
(·)).
Moreover, the covariance matrix of Vect(
i

r(T )) is equal to T ⊗ T + ⊥(VectT ×
∗VectT ). Hence, (P′

9) is proved for the martingale (Mn). �

PROOF OF PROPERTY (P10). Property (B.15) combined with
n∑

k=1

ρ−k tr(Mk
∗Mk − 〈M〉k)

=
(

ρ

ρ − 1

)〈(
VectId2

VectId2

)
,Hn

〉
+ o

(√
n
)

(B.16)

=
(

ρ

ρ − 1

)( d∑
r=1

d∑
s=1

∗esH
r,r
n es +

d∑
r=1

d∑
s=1

∗esH̃
r,r
n es

)
a.s. on E,

allows us to affirm that, conditional on E or En,{
1√
n

n∑
k=1

ρ−k tr(Mk
∗Mk − 〈M〉k), ρ−n/2Mn

}
L−→

n→∞

{
τG,


((
W

ρ − 1

)1/2

Id2

)}
,

where G is a standard Gaussian r.v., which is also independent of the pair (W,
(·))
and τ 2 = ((2W2d2(ρ + 1))/(ρ − 1)3). In fact, according to (B.10) and (B.16), if
x̃ and z̃ are the vectors of the canonical basis of Rd2

, then(
ρ − 1

ρ

)2

τ 2 = 2W2

ρ2(ρ − 1)

d∑
r=1

d∑
s=1

(〈er , er〉2〈es, es〉2 + 〈er , er〉2〈es, es〉2)

+ W2

ρ2

d∑
r=1

d∑
s=1

(〈er , er〉2〈es, es〉2 + 〈er , er〉2〈es, es〉2)

= 4W2d2

ρ2(ρ − 1)
+ 2W2d2

ρ2 = 2W2d2(ρ + 1)

ρ2(ρ − 1)
.

The proof of Lemma 4.4 is complete. �
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PROOF OF PROPERTY (P8). Let us prove the LIL announced in Lemma 3.4
for (Mn). The martingale

Ln =
〈(

Vect(Id2)

Vect(Id2)

)
,Hn

〉
satisfies the LIL

lim sup
n→∞

(2〈L〉n ln ln〈L〉n)−1/2|Ln| = 1 a.s. on E.

This fact is a consequence of the LIL stated in [6, 7]. In fact, the properties

‖ρ−n/2Mn‖2 = O(lnn), 〈L〉n = O(n)

and

E(‖ρ−n/2�Mn‖4|Gn−1) = O
(
(lnn)2),

a.s. on E, imply that
∑

n≥1 E(|(〈L〉n)−1/2�Ln|4|Gn−1) < ∞ a.s. on E. Since

n−1〈L〉n −→
n→∞

2W2d2(ρ + 1)

ρ2(ρ − 1)
a.s. on E,

we deduce the LIL

lim sup
(

n

ln lnn

)1/2
∣∣∣∣∣1n

n∑
k=1

ρ−k tr(Mk
∗Mk − 〈M〉k)

∣∣∣∣∣= 2d
W(ρ + 1)1/2

(ρ − 1)3/2

a.s. on E,

taking in account the relation (B.16).
The LIL announced in the second part of (P8) may be deduced easily from the

last property, since we have H̃n = W
ρ

Žn + O(lnn) a.s. on E. �
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