Annals of Statistics
- Ann. Statist.
- Volume 31, Number 3 (2003), 705-767.
Slice sampling
Full-text: Open access
Abstract
Markov chain sampling methods that adapt to characteristics of the distribution being sampled can be constructed using the principle that one can ample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertical direction with uniform sampling from the horizontal "slice" defined by the current vertical position, or more generally, with some update that leaves the uniform distribution over this slice invariant. Such "slice sampling" methods are easily implemented for univariate distributions, and can be used to sample from a multivariate distribution by updating each variable in turn. This approach is often easier to implement than Gibbs sampling and more efficient than simple Metropolis updates, due to the ability of slice sampling to adaptively choose the magnitude of changes made. It is therefore attractive for routine and automated use. Slice sampling methods that update all variables simultaneously are also possible. These methods can adaptively choose the magnitudes of changes made to each variable, based on the local properties of the density function. More ambitiously, such methods could potentially adapt to the dependencies between variables by constructing local quadratic approximations. Another approach is to improve sampling efficiency by suppressing random walks. This can be done for univariate slice sampling by "overrelaxation," and for multivariate slice sampling by "reflection" from the edges of the slice.
Article information
Source
Ann. Statist., Volume 31, Number 3 (2003), 705-767.
Dates
First available in Project Euclid: 25 June 2003
Permanent link to this document
https://projecteuclid.org/euclid.aos/1056562461
Digital Object Identifier
doi:10.1214/aos/1056562461
Mathematical Reviews number (MathSciNet)
MR1994729
Zentralblatt MATH identifier
1051.65007
Subjects
Primary: 65C60: Computational problems in statistics 65C05: Monte Carlo methods
Keywords
Markov chain Monte Carlo auxiliary variables adaptive methods Gibbs sampling Metropolis algorithm overrelaxation dynamical methods
Citation
Neal, Radford M. Slice sampling. Ann. Statist. 31 (2003), no. 3, 705--767. doi:10.1214/aos/1056562461. https://projecteuclid.org/euclid.aos/1056562461
References
- ADLER, S. L. (1981). Over-relaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions. Phy s. Rev. D 23 2901-2904.
- BARONE, P. and FRIGESSI, A. (1990). Improving stochastic relaxation for Gaussian random fields. Probab. Engrg. Inform. Sci. 4 369-389.
- BESAG, J. and GREEN, P. J. (1993). Spatial statistics and Bayesian computation (with discussion). J. Roy. Statist. Soc. Ser. B 55 25-37, 53-102.
- CHEN, M.-H. and SCHMEISER, B. W. (1998). Toward black-box sampling: A random-direction interior-point Markov chain approach. J. Comput. Graph. Statist. 7 1-22. Mathematical Reviews (MathSciNet): MR1628255
Digital Object Identifier: doi:10.2307/1390766
JSTOR: links.jstor.org - DAMIEN, P., WAKEFIELD, J. C. and WALKER, S. G. (1999). Gibbs sampling for Bayesian nonconjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 331-344. Mathematical Reviews (MathSciNet): MR1680334
Zentralblatt MATH: 0913.62028
Digital Object Identifier: doi:10.1111/1467-9868.00179
JSTOR: links.jstor.org - DIACONIS, P., HOLMES, S. and NEAL, R. M. (2000). Analy sis of a non-reversible Markov chain sampler. Ann. Appl. Probab. 10 726-752. Mathematical Reviews (MathSciNet): MR2001i:60114
Zentralblatt MATH: 01906286
Digital Object Identifier: doi:10.1214/aoap/1019487508
Project Euclid: euclid.aoap/1019487508 - DOWNS, O. B., MACKAY, D. J. C. and LEE, D. D. (2000). The nonnegative Boltzmann machine. In Advances in Neural Information Processing Sy stems (S. A. Solla, T. K. Leen and K.-R. Muller, eds.) 428-434. MIT Press, Cambridge, MA.
- DUANE, S., KENNEDY, A. D., PENDLETON, B. J. and ROWETH, D. (1987). Hy brid Monte Carlo. Phy s. Lett. B 195 216-222.
- EDWARDS, R. G. and SOKAL, A. D. (1988). Generalization of the Fortuin-Kasteley n-Swendsen- Wang representation and Monte Carlo algorithm. Phy s. Rev. D 38 2009-2012.
- FREY, B. J. (1997). Continuous sigmoidal belief networks trained using slice sampling. In Advances in Neural Information Processing Sy stems (M. C. Mozer, M. I. Jordan and T. Petsche, eds.). MIT Press, Cambridge, MA.
- GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409. Zentralblatt MATH: 0702.62020
Mathematical Reviews (MathSciNet): MR1141740
Digital Object Identifier: doi:10.2307/2289776
JSTOR: links.jstor.org - GEy ER, C. J. and THOMPSON, E. A. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 909-920.
- GILKS, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. In Bayesian Statistics (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 641-649. Oxford Univ. Press. Mathematical Reviews (MathSciNet): MR1380266
- GILKS, W. R., BEST, N. G. and TAN, K. K. C. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Appl. Statist. 44 455-472. Zentralblatt MATH: 0893.62110
- GILKS, W. R., NEAL, R. M., BEST, N. G. and TAN, K. K. C. (1997). Corrigendum: Adaptive rejection Metropolis sampling. Appl. Statist. 46 541-542.
- GILKS, W. R. and WILD, P. (1992). Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41 337-348. Zentralblatt MATH: 0825.62407
- GREEN, P. J. and HAN, X. (1992). Metropolis methods, Gaussian proposals and antithetic variables. Stochastic Models, Statistical Methods, and Algorithms in Image Analy sis (P. Barone et al., eds.). Lecture Notes in Statist. 74 142-164. Springer, New York. Mathematical Reviews (MathSciNet): MR1188477
- GREEN, P. J. and MIRA, A. (2001). Delay ed rejection in reversible jump Metropolis-Hastings. Biometrika 88 1035-1053.
- HASTINGS, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109. Zentralblatt MATH: 0219.65008
- HIGDON, D. M. (1996). Auxiliary variable methods for Markov chain Monte Carlo with applications. ISDS discussion paper 96-17, Duke Univ.
- HOROWITZ, A. M. (1991). A generalized guided Monte Carlo algorithm. Phy s. Lett. B 268 247-252.
- LUNN, D. J., THOMAS, A., BEST, N. and SPIEGELHALTER, D. (2000). WinBUGSa Bayesian modelling framework: Concepts, structure, and extensibility. Statist. Comput. 10 325-337.
- METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H. and TELLER, E.
- (1953). Equation of state calculations by fast computing machines. J. Chem. Phy s. 21 1087-1092.
- MIRA, A. (1998). Ordering, splicing and splitting Monte Carlo Markov chains. Ph.D. dissertation, School of Statistics, Univ. Minnesota.
- MIRA, A. and TIERNEY, L. (2002). Efficiency and convergence properties of slice samplers. Scand. J. Statist. 29 1-12. Mathematical Reviews (MathSciNet): MR2003b:62154
Digital Object Identifier: doi:10.1111/1467-9469.00267 - NEAL, R. M. (1994). An improved acceptance procedure for the hy brid Monte Carlo algorithm. J. Comput. Phy s. 111 194-203. Mathematical Reviews (MathSciNet): MR94k:65010
Zentralblatt MATH: 0797.65115
Digital Object Identifier: doi:10.1006/jcph.1994.1054 - NEAL, R. M. (1996). Bayesian Learning for Neural Networks. Lecture Notes in Statist. 118. Springer, New York.
- NEAL, R. M. (1998). Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation. In Learning in Graphical Models (M. I. Jordan, ed.) 205-228. Kluwer, Dordrecht.
- NEAL, R. M. (2001). Annealed importance sampling. Statist. Comput. 11 125-139.
- ROBERTS, G. O. and ROSENTHAL, J. S. (1999). Convergence of slice sampler Markov chains. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 643-660. Zentralblatt MATH: 0929.62098
Mathematical Reviews (MathSciNet): MR1707866
Digital Object Identifier: doi:10.1111/1467-9868.00198
JSTOR: links.jstor.org - THOMAS, A., SPIEGELHALTER, D. J. and GILKS, W. R. (1992). BUGS: A program to perform Bayesian inference using Gibbs sampling. In Bayesian Statistics (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 837-842. Oxford Univ. Press.
- TIERNEY, L. and MIRA, A. (1999). Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine 18 2507-2515.
- Chen (1996).
- CHEN, M.-H. and SCHMEISER, B. W. (1993). Performance of the Gibbs, hit-and-run, and Metropolis samplers. J. Comput. Graph. Statist. 2 251-272. Mathematical Reviews (MathSciNet): MR1272394
Digital Object Identifier: doi:10.2307/1390645
JSTOR: links.jstor.org - CHEN, M.-H. and SCHMEISER, B. W. (1998). Toward black-box sampling: A random-direction interior-point Markov chain approach. J. Comput. Graph. Statist. 7 1-22. Mathematical Reviews (MathSciNet): MR1628255
Digital Object Identifier: doi:10.2307/1390766
JSTOR: links.jstor.org - NANDRAM, B. and CHEN, M.-H. (1996). Reparameterizing the generalized linear model to accelerate Gibbs sampler convergence. J. Statist. Comput. Simulation 54 129-144. Mathematical Reviews (MathSciNet): MR2000b:62142
Zentralblatt MATH: 0925.62309
Digital Object Identifier: doi:10.1080/00949659608811724 - KAUFMAN, D. E. and SMITH, R. L. (1998). Direction choice for accelerated convergence in hit-and-run sampling. Oper. Res. 46 84-95.Zentralblatt MATH: 1009.62597
- DOWNS, O. B. (2001). High-temperature expansions for learning models of nonnegative data. In Advances in Neural Information Processing Sy stems 13 (T. K. Leen, T. G. Dietterich and V. Tresp, eds.) 465-471. MIT Press, Cambridge, MA.
- DOWNS, O. B., MACKAY, D. J. C. and LEE, D. D. (2000). The nonnegative Boltzmann machine. In Advances in Neural Information Processing Sy stems 12 (S. A. Solla, T. K. Leen and K.-R. Muller, eds.) 428-434. MIT Press, Cambridge, MA.
- HINTON, G. E. and SEJNOWSKI, T. J. (1983). Optimal perceptual learning. In IEEE Conference on Computer Vision and Pattern Recognition 448-453. Washington.
- KAPPEN, H. J. and RODRIGUEZ, F. B. (1998). Efficient learning in Boltzmann machines using linear response theory. Neural Computation 10 1137-1156.
- LEE, D. D. and SEUNG, H. S. (1999). Learning the parts of objects by nonnegative matrix factorization. Nature 401 788-791.
- MACKAY, D. J. C. (1998). Introduction to Monte Carlo methods. In Learning in Graphical Models (M. I. Jordan, ed.) 175-204. Kluwer, Dordrecht.
- NEAL, R. M. (1997). Markov chain Monte Carlo methods based on "slicing" the density function. Technical Report 9722, Dept. Statistics, Univ. Toronto.
- CASELLA, G., MENGERSEN, K. L., ROBERT, C. P. and TITTERINGTON, D. M. (2002). Perfect samplers for mixtures of distributions. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 777-790. Mathematical Reviews (MathSciNet): MR1979386
Zentralblatt MATH: 1067.62028
Digital Object Identifier: doi:10.1111/1467-9868.00360
JSTOR: links.jstor.org - FILL, J. A. (1998). An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl. Probab. 8 131-162. Mathematical Reviews (MathSciNet): MR99g:60113
Zentralblatt MATH: 0939.60084
Digital Object Identifier: doi:10.1214/aoap/1027961037
Project Euclid: euclid.aoap/1027961037 - GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732. Zentralblatt MATH: 0861.62023
Mathematical Reviews (MathSciNet): MR1380810
Digital Object Identifier: doi:10.1093/biomet/82.4.711
JSTOR: links.jstor.org - GREEN, P. J. and MIRA, A. (2001). Delay ed rejection in reversible jump Metropolis-Hastings. Biometrika 88 1035-1053.
- KENDALL, W. S. and MØLLER, J. (2000). Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. in Appl. Probab. 32 844-865. Mathematical Reviews (MathSciNet): MR2001h:62176
Zentralblatt MATH: 1123.60309
Digital Object Identifier: doi:10.1239/aap/1013540247
Project Euclid: euclid.aap/1013540247 - MIRA, A. (1998). Ordering, slicing and splitting Monte Carlo Markov chains. Ph.D. dessertation, School of Statistics, Univ. of Minnesota.
- MIRA, A. (2002). On Metropolis-Hastings algorithms with delay ed rejection. Metron 59 231-241. Mathematical Reviews (MathSciNet): MR1889712
- MIRA, A., MØLLER, J. and ROBERTS, G. O. (2001). Perfect slice samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 593-606. Mathematical Reviews (MathSciNet): MR2002j:62011
Zentralblatt MATH: 0993.65015
Digital Object Identifier: doi:10.1111/1467-9868.00301
JSTOR: links.jstor.org - MIRA, A. and TIERNEY, L. (2002). Efficiency and convergence properties of slice samplers. Scand. J. Statist. 29 1-12. Mathematical Reviews (MathSciNet): MR2003b:62154
Digital Object Identifier: doi:10.1111/1467-9469.00267 - PESKUN, P. H. (1973). Optimum Monte Carlo sampling using Markov chains. Biometrika 60 607-612. Mathematical Reviews (MathSciNet): MR50:15261
Zentralblatt MATH: 0271.62041
Digital Object Identifier: doi:10.1093/biomet/60.3.607
JSTOR: links.jstor.org - PROPP, J. and WILSON, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures Algorithms 9 223-252.
- ROBERTS, G. O. and ROSENTHAL, J. S. (1999). Convergence of slice sampler Markov chains. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 643-660. Zentralblatt MATH: 0929.62098
Mathematical Reviews (MathSciNet): MR1707866
Digital Object Identifier: doi:10.1111/1467-9868.00198
JSTOR: links.jstor.org - ROBERTS, G. O. and ROSENTHAL, J. S. (2001). Markov chains and deinitialising processes. Scand. J. Statist. 28 489-505.
- ROBERTS, G. O. and ROSENTHAL, J. S. (2002). The polar slice sampler. Stoch. Models 18 257-280.Zentralblatt MATH: 1006.65004
Mathematical Reviews (MathSciNet): MR1904830
Digital Object Identifier: doi:10.1081/STM-120004467 - ROBERTS, G. O. and TWEEDIE, R. L. (2000). Rates of convergence of stochastically monotone and continuous time Markov models. J. Appl. Probab. 37 359-373. Zentralblatt MATH: 0979.60060
Mathematical Reviews (MathSciNet): MR1780996
Digital Object Identifier: doi:10.1239/jap/1014842542
Project Euclid: euclid.jap/1014842542 - TIERNEY, L. and MIRA, A. (1999). Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine 18 2507-2515.
- WILSON, D. B. (2000). How to couple from the past using a read-once source of randomness. Random Structures Algorithms 16 85-113.
- DAMIEN, P., WAKEFIELD, J. C. and WALKER, S. G. (1999). Gibbs sampling for Bayesian nonconjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 331-344. Mathematical Reviews (MathSciNet): MR1680334
Zentralblatt MATH: 0913.62028
Digital Object Identifier: doi:10.1111/1467-9868.00179
JSTOR: links.jstor.org - ROBERTS, G. O. and ROSENTHAL, J. S. (1999). Convergence of slice sampler Markov chains. J. R. Statist. Soc. Ser. B 61 643-660.Zentralblatt MATH: 0929.62098
Mathematical Reviews (MathSciNet): MR1707866
Digital Object Identifier: doi:10.1111/1467-9868.00198
JSTOR: links.jstor.org - CARACCIOLO, S., PELISSETTO, A. and SOKAL, A. D. (1994). A general limitation on Monte Carlo algorithms of Metropolis ty pe. Phy s. Rev. Lett. 72 179-182. Mathematical Reviews (MathSciNet): MR94i:65008
Zentralblatt MATH: 0973.65500
Digital Object Identifier: doi:10.1103/PhysRevLett.72.179 - CHEN, M.-H. and SCHMEISER, B. W. (1998). Toward black-box sampling: A random-direction interior-point Markov chain approach. J. Comput. Graph. Statistics 7 1-22. Mathematical Reviews (MathSciNet): MR1628255
Digital Object Identifier: doi:10.2307/1390766
JSTOR: links.jstor.org - DAMIEN, P., WAKEFIELD, J. C. and WALKER, S. G. (1999). Gibbs sampling for Bayesian nonconjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 331-344. Mathematical Reviews (MathSciNet): MR1680334
Zentralblatt MATH: 0913.62028
Digital Object Identifier: doi:10.1111/1467-9868.00179
JSTOR: links.jstor.org - EDWARDS, R. G. and SOKAL, A. D. (1988). Generalization of the Fortuin-Kasteley n-Swendsen- Wang representation and Monte Carlo algorithm. Phy s. Rev. D 38 2009-2012.
- GREEN, P. J. and MIRA, A. (2001). Delay ed rejection in reversible jump Metropolis-Hastings. Biometrika 88 1035-1053.
- MIRA, A. (1998). Ordering, splicing and splitting Monte Carlo Markov chains. Ph.D. dissertation, School of Statistics, Univ. Minnesota.
- NEAL, R. M. (1997). Markov chain Monte Carlo methods based on "slicing" the density function. Technical Report 9722, Dept. Statistics, Univ. Toronto.
- ROBERTS, G. O. and ROSENTHAL, J. S. (2002). The polar slice sampler. Stoch. Models 18 257-280. Zentralblatt MATH: 1006.65004
Mathematical Reviews (MathSciNet): MR1904830
Digital Object Identifier: doi:10.1081/STM-120004467 - TIERNEY, L. and MIRA, A. (1999). Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine 18 2507-2515.
See also
- Includes: Ming-Hui Chen, Bruce W. Schmeiser. Discussion.
- Includes: Oliver B. Downs. Discussion.
- Includes: Antonietta Mira, Gareth O. Roberts. Discussion.
- Includes: John Skilling, David J. C. MacKay. Discussion.
- Includes: S. G. Walker. Discussion.
- Includes: Radford M. Neal. Rejoinder.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- An interruptible algorithm for perfect sampling via Markov
chains
Fill, James Allen, Annals of Applied Probability, 1998 - A Vine-copula Based Adaptive MCMC Sampler for Efficient Inference of Dynamical Systems
Schmidl, Daniel, Czado, Claudia, Hug, Sabine, and Theis, Fabian J., Bayesian Analysis, 2013 - Self-regenerative Markov chain Monte Carlo with adaptation
Sahu, Sujit K. and Zhigljavsky, Anatoly A., Bernoulli, 2003
- An interruptible algorithm for perfect sampling via Markov
chains
Fill, James Allen, Annals of Applied Probability, 1998 - A Vine-copula Based Adaptive MCMC Sampler for Efficient Inference of Dynamical Systems
Schmidl, Daniel, Czado, Claudia, Hug, Sabine, and Theis, Fabian J., Bayesian Analysis, 2013 - Self-regenerative Markov chain Monte Carlo with adaptation
Sahu, Sujit K. and Zhigljavsky, Anatoly A., Bernoulli, 2003 - Semiparametric regression in testicular germ
cell data
Voulgaraki, Anastasia, Kedem, Benjamin, and Graubard, Barry I., Annals of Applied Statistics, 2012 - Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals
van der Meulen, Frank and Schauer, Moritz, Electronic Journal of Statistics, 2017 - Markov Chains for Exploring Posterior Distributions
Tierney, Luke, Annals of Statistics, 1994 - On particle Gibbs sampling
Chopin, Nicolas and Singh, Sumeetpal S., Bernoulli, 2015 - Spline Adaptation in Extended Linear Models
(with comments and a rejoinder by the authors
Hansen, Mark H. and Kooperberg, Charles, Statistical Science, 2002 - Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity under Mixing and Composition
Johnson, Alicia A., Jones, Galin L., and Neath, Ronald C., Statistical Science, 2013 - Transdimensional transformation based Markov chain Monte Carlo
Das, Moumita and Bhattacharya, Sourabh, Brazilian Journal of Probability and Statistics, 2019
