Annals of Probability

On the moments and the interface of the symbiotic branching model

Jochen Blath, Leif Döring, and Alison Etheridge

Full-text: Open access


In this paper we introduce a critical curve separating the asymptotic behavior of the moments of the symbiotic branching model, introduced by Etheridge and Fleischmann [Stochastic Process. Appl. 114 (2004) 127–160] into two regimes. Using arguments based on two different dualities and a classical result of Spitzer [Trans. Amer. Math. Soc. 87 (1958) 187–197] on the exit-time of a planar Brownian motion from a wedge, we prove that the parameter governing the model provides regimes of bounded and exponentially growing moments separated by subexponential growth. The moments turn out to be closely linked to the limiting distribution as time tends to infinity. The limiting distribution can be derived by a self-duality argument extending a result of Dawson and Perkins [Ann. Probab. 26 (1998) 1088–1138] for the mutually catalytic branching model.

As an application, we show how a bound on the 35th moment improves the result of Etheridge and Fleischmann [Stochastic Process. Appl. 114 (2004) 127–160] on the speed of the propagation of the interface of the symbiotic branching model.

Article information

Ann. Probab., Volume 39, Number 1 (2011), 252-290.

First available in Project Euclid: 3 December 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

Symbiotic branching model mutually catalytic branching stepping stone model parabolic Anderson model moment duality self-duality propagation of interface exit distribution


Blath, Jochen; Döring, Leif; Etheridge, Alison. On the moments and the interface of the symbiotic branching model. Ann. Probab. 39 (2011), no. 1, 252--290. doi:10.1214/10-AOP543.

Export citation


  • [1] Aurzada, F. and Döring, L. (2010). Intermittency and aging for the symbiotic branching model. Ann. Inst. H. Poincaré. To appear.
  • [2] Cox, J. T., Dawson, D. A. and Greven, A. (2004). Mutually catalytic super branching random walks: Large finite systems and renormalization analysis. Mem. Amer. Math. Soc. 171 viii+97.
  • [3] Cox, J. T. and Klenke, A. (2000). Recurrence and ergodicity of interacting particle systems. Probab. Theory Related Fields 116 239–255.
  • [4] Cox, J. T., Klenke, A. and Perkins, E. A. (2000). Convergence to equilibrium and linear systems duality. In Stochastic Models (Ottawa, ON, 1998). CMS Conf. Proc. 26 41–66. Amer. Math. Soc., Providence, RI.
  • [5] Carmona, R. A. and Molchanov, S. A. (1994). Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 viii+125.
  • [6] Dawson, D. A., Fleischmann, K. and Xiong, J. (2005). Strong uniqueness for cyclically symbiotic branching diffusions. Statist. Probab. Lett. 73 251–257.
  • [7] Dawson, D. A. and Perkins, E. A. (1998). Long-time behavior and coexistence in a mutually catalytic branching model. Ann. Probab. 26 1088–1138.
  • [8] Etheridge, A. M. and Fleischmann, K. (2004). Compact interface property for symbiotic branching. Stochastic Process. Appl. 114 127–160.
  • [9] Greven, A. and den Hollander, F. (2007). Phase transitions for the long-time behavior of interacting diffusions. Ann. Probab. 35 1250–1306.
  • [10] Gärtner, J. and Molchanov, S. A. (1990). Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 613–655.
  • [11] Klenke, A. and Mytnik, L. (2009). Infinite rate mutually catalytic branching in infinitely many colonies: Construction, characterization and convergence. Preprint. Available at arXiv:0901.0623v1.
  • [12] Klenke, A. and Mytnik, L. (2009). Infinite rate mutually catalytic branching in infinitely many colonies: The longtime behaviour. Preprint. Available at arXiv:0901.4120v1.
  • [13] Klenke, A. and Oeler, M. (2010). A Trotter-type approach to infinite rate mutually catalytic branching. Ann. Probab. 38 479–497.
  • [14] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York.
  • [15] Mörters, P. and Peres, Y. (2010). Brownian Motion. Cambridge Univ. Press, Cambridge.
  • [16] Mueller, C. and Tribe, R. (1997). Finite width for a random stationary interface. Electron. J. Probab. 2 1–27.
  • [17] Mueller, C. (1991). On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 225–245.
  • [18] Mytnik, L. (1998). Uniqueness for a mutually catalytic branching model. Probab. Theory Related Fields 112 245–253.
  • [19] Rebholz, J. A. (1995). A skew-product representation for the generator of a two sex population model. In Stochastic Partial Differential Equations (Edinburgh, 1994). London Mathematical Society Lecture Note Series 216 230–240. Cambridge Univ. Press, Cambridge.
  • [20] Shiga, T. (1980). An interacting system in population genetics. J. Math. Kyoto Univ. 20 213–242.
  • [21] Shiga, T. (1992). Ergodic theorems and exponential decay of sample paths for certain interacting diffusion systems. Osaka J. Math. 29 789–807.
  • [22] Shiga, T. (1994). Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46 415–437.
  • [23] Spitzer, F. (1958). Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 187–197.
  • [24] Tribe, R. (1995). Large time behavior of interface solutions to the heat equation with Fisher–Wright white noise. Probab. Theory Related Fields 102 289–311.
  • [25] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265–439. Springer, Berlin.