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In this paper we introduce a critical curve separating the asymptotic
behavior of the moments of the symbiotic branching model, introduced by
Etheridge and Fleischmann [Stochastic Process. Appl. 114 (2004) 127–160]
into two regimes. Using arguments based on two different dualities and a
classical result of Spitzer [Trans. Amer. Math. Soc. 87 (1958) 187–197] on
the exit-time of a planar Brownian motion from a wedge, we prove that the
parameter governing the model provides regimes of bounded and exponen-
tially growing moments separated by subexponential growth. The moments
turn out to be closely linked to the limiting distribution as time tends to in-
finity. The limiting distribution can be derived by a self-duality argument ex-
tending a result of Dawson and Perkins [Ann. Probab. 26 (1998) 1088–1138]
for the mutually catalytic branching model.

As an application, we show how a bound on the 35th moment improves the
result of Etheridge and Fleischmann [Stochastic Process. Appl. 114 (2004)
127–160] on the speed of the propagation of the interface of the symbiotic
branching model.

1. Introduction. In 2004, Etheridge and Fleischmann [8] introduced a sto-
chastic spatial model of two interacting populations known as the symbiotic
branching model, parametrized by a parameter � ∈ [−1,1] governing the correla-
tion between the two driving noises. The model can be considered in three different
spatial setups which we now explain.

First, the continuous-space symbiotic branching model is given by the system
of stochastic partial differential equations

cSBM(�, κ)u0,v0
:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ut (x) = 1

2
�ut(x) + √

κut (x)vt (x) dW 1
t (x),

∂

∂t
vt (x) = 1

2
�vt(x) + √

κut (x)vt (x) dW 2
t (x),

u0(x) ≥ 0, x ∈ R,

v0(x) ≥ 0, x ∈ R,

(1.1)

Received July 2009; revised February 2010.
1Supported in part by the DFG International Research Training Group “Stochastic Models of Com-

plex Processes” and the Berlin Mathematical School.
AMS 2000 subject classifications. Primary 60K35; secondary 60J80.
Key words and phrases. Symbiotic branching model, mutually catalytic branching, stepping stone

model, parabolic Anderson model, moment duality, self-duality, propagation of interface, exit distri-
bution.

252

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/10-AOP543
http://www.imstat.org
http://www.ams.org/msc/


ON THE SYMBIOTIC BRANCHING MODEL 253

where � denotes the Laplace operator and κ > 0 is a fixed constant known as
the branching rate. W = (W 1,W 2) is a pair of correlated standard Gaussian white
noises on R+ ×R with correlation � ∈ [−1,1], that is, the unique Gaussian process
with covariance structure

E[W 1
t1
(A1)W

1
t2
(A2)] = (t1 ∧ t2)�(A1 ∩ A2),(1.2)

E[W 2
t1
(A1)W

2
t2
(A2)] = (t1 ∧ t2)�(A1 ∩ A2),(1.3)

E[W 1
t1
(A1)W

2
t2
(A2)] = �(t1 ∧ t2)�(A1 ∩ A2),(1.4)

where � denotes Lebesgue measure, A1,A2 ∈ B(R) and t1, t2 ≥ 0. Note that we
work with a white noise W in the sense of Walsh [25]. Solutions of this model
have been considered rigorously in the framework of the corresponding martin-
gale problem in Theorem 4 of [8], which states that, under suitable conditions on
the initial conditions u0(·), v0(·), a solution exists for all � ∈ [−1,1]. The martin-
gale problem is well posed for all � ∈ [−1,1), which implies the strong Markov
property except in the boundary case � = 1.

For a discrete spatial version we consider the system of interacting diffusions
on Z

d , with values in R≥0, defined by the coupled stochastic differential equations

dSBM(�, κ)u0,v0 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dut (i) = �ut(i) dt + √
κut (i)vt (i) dB1

t (i),

dvt (i) = �vt(i) dt + √
κut (i)vt (i) dB2

t (i),

u0(i) ≥ 0, i ∈ Z
d,

v0(i) ≥ 0, i ∈ Z
d,

(1.5)

where now {B1(i),B2(i)}i∈Zd is a family of standard Brownian motions with co-
variances given by

[Bn· (i),Bm· (j)]t =
⎧⎨
⎩

�t, i = j and n �= m,
t, i = j and n = m,
0, otherwise.

(1.6)

In the discrete case, � denotes the discrete Laplacian

�ut(i) = ∑
|k−i|=1

1

2d

(
ut (k) − ut (i)

)
.

Note that in this paper we denote by [N·,M·]t the cross-variation of two mar-
tingales N,M . This is to avoid confusion with 〈f,g〉 which will be defined to be
the sum (resp., integral) of the product of f and g.

Finally, the nonspatial symbiotic branching model is defined by the stochastic
differential equations

SBM(�, κ)u0,v0 :

⎧⎪⎪⎨
⎪⎪⎩

dut = √
κutvt dB1

t ,

dvt = √
κutvt dB2

t ,

u0 ≥ 0,

v0 ≥ 0.
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Again, the noises are correlated with [B1· ,B2· ]t = �t . This simple toy-model (see
also [19] and [6]) can be analyzed quite simply and will be used to prove properties
of the spatial models.

CONVENTION 1.1. From time to time we skip the dependence on �, κ,u0
and v0 if there is no ambiguity. Solutions of cSBM,SBM and dSBM for d ≤ 2
are called symbiotic branching processes in the recurrent case whereas solutions
of dSBM for d ≥ 3 are called symbiotic branching processes in the transient case.

Interestingly, symbiotic branching models include well-known spatial models
from different branches of probability theory. In the discrete spatial case (and anal-
ogously in continuous-space) interacting diffusions of the type

dwt(i) = �wt(i) dt +
√

κf (wt(i)) dBt (i)(1.7)

have been studied extensively in the literature. Some important examples are the
following:

EXAMPLE 1. The stepping stone model from mathematical genetics: f (x) =
x(1 − x).

EXAMPLE 2. The parabolic Anderson model (with Brownian potential) from
mathematical physics: f (x) = x2.

EXAMPLE 3. The super random walk from probability theory: f (x) = x.

For the super random walk, κ is the branching rate which in this case is time–
space independent. In [7], a two-type model based on two super random walks
with time–space dependent branching was introduced. The branching rate for one
species is proportional to the value of the other species. More precisely, the authors
considered

dut (i) = �ut(i) dt + √
κut (i)vt (i) dB1

t (i),

dvt (i) = �vt(i) dt + √
κut (i)vt (i) dB2

t (i),

where now {B1(i),B2(i)}i∈Zd is a family of independent standard Brownian mo-
tions. Solutions are called mutually catalytic branching processes. In the following
years, properties of this model were well studied (see, e.g., [3] and [2]). The cor-
responding continuous-space version was also treated in [7].

For correlation � = 0, solutions of the symbiotic branching model are obvi-
ously solutions of the mutually catalytic branching model. The case � = −1 with
the additional assumption u0 +v0 ≡ 1 corresponds to the stepping stone model. To
see this, observe that in the perfectly negatively correlated case B1(i) = −B2(i)

which implies that the sum u + v solves a discrete heat equation and with the
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further assumption u0 + v0 ≡ 1 stays constant for all time. Hence, for all t ≥ 0,
u(t, ·) ≡ 1 − v(t, ·), which shows that u is a solution of the stepping stone model
with initial condition u0 and v is a solution with initial condition v0. Finally, sup-
pose w is a solution of the parabolic Anderson model, then, for � = 1, the pair
(u, v) := (w,w) is a solution of the symbiotic branching model with initial condi-
tions u0 = v0 = w0.

The purpose of this and the accompanying paper [1] is to understand the nature
of the symbiotic branching model better. How does the model depend on the cor-
relation �? Are properties of the extremal cases � ∈ {−1,0,1} inherited by some
parts of the parameter space? Since the longtime behavior of the super random
walk, stepping stone model, mutually catalytic branching model and parabolic An-
derson model is very different, one might guess that the parameter space [−1,1]
can be divided into disjoint subsets corresponding to different regimes.

The focus of [1] is second moment properties. In the discrete setting, but with
a more general setup, growth of second moments is analyzed in detail. A moment
duality is used to reduce the problem to moment generating functions and Laplace
transforms of local times of discrete-space Markov processes. A precise analysis
of those is used to derive intermittency and aging results which show that different
regimes occur for � < 0, � = 0 and � > 0.

In contrast to [1], the present paper is not restricted to second moment prop-
erties. The aim is to understand the pathwise behavior of symbiotic branching
processes better.

REMARK 1.2. In this paper, we restrict ourselves to the simplest setups which
already provide the full variety of results. For the discrete spatial model we thus
restrict ourselves to the discrete Laplacian instead of allowing more general transi-
tions. This is not necessary; see [7] or [2] for a construction of solutions and main
properties for more general underlying migration mechanisms in the case � = 0.
Furthermore, we mainly restrict ourselves to homogeneous initial conditions and
remark where results hold more generally. Here, for nonnegative real numbers we
denote by u the constant functions u(·) ≡ u.

The paper is organized as follows: our main results are presented in Section 2.
Before proving the results, we collect basic properties of the symbiotic branching
models and discuss the dualities that we need. This is carried out in Section 3.
The final sections are devoted to the proofs. In Section 4, proofs of the longtime
convergence in law are given, and in Section 5 we discuss the longtime behavior
of moments. Finally, in Section 6 we show how to use the results of Section 5 to
strengthen the main result of [8].

2. Results. Before stating the main results, we briefly recall from [8] that the
state space of cSBM is given by pairs of tempered functions, that is, pairs of func-
tions contained in

Mtem =
{
u|u : R → R≥0, lim|x|→∞u(x)φλ(x) exists and ‖uφλ‖∞ < ∞ ∀λ < 0

}
,
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where φλ(x) = eλ|x|, and we think of Mtem as being topologized by the metric
given in [8], equation (13), yielding a Polish space.

The state space for dSBM is similar. It was not discussed in [8] and so we
present details in Section 3.

2.1. Convergence in law. We begin with a result, generalizing Theorem 1.5
of [7], on the longtime behavior of the laws of symbiotic branching processes in
the recurrent case.

PROPOSITION 2.1. Suppose (ut , vt ) is a spatial symbiotic branching process
in the recurrent case with � ∈ (−1,1), κ > 0 and initial conditions u0 = u, v0 = v.
Let B1 and B2 be two Brownian motions with covariance

[B1· ,B2· ]t = �t, t ≥ 0,

and initial conditions B1
0 = u,B2

0 = v. Further, let

τ = inf{t ≥ 0 :B1
t B2

t = 0}
be the first exit time of the correlated Brownian motions B1,B2 from the upper
right quadrant. Then, weakly in M2

tem,

P
u,v[(ut , vt ) ∈ ·] ⇒ P u,v[(B̄1

τ , B̄2
τ ) ∈ ·]

as t → ∞. Here, (B̄1
τ , B̄2

τ ) denotes the pair of constant functions on R, respec-
tively, Z

d (d = 1,2) taking the values of the stopped Brownian motions (B1
τ ,B2

τ ).

In particular, the proposition shows ultimate extinction of one species in law.

REMARK 2.2. For simplicity, Proposition 2.1 is formulated for constant initial
conditions even though the result holds more generally. Theorem 1.5 of [7] (the
case � = 0) was extended in [4] to nondeterministic initial conditions: for fixed
u, v ≥ 0 let Mu,v be the set of probability measures ν on M2

tem such that

sup
x∈R

∫ (
a2(x) + b2(x)

)
dν(a, b) < ∞(2.1)

and

lim
t→∞

∫ [(
Pta(x) − u

)2 + (
Ptb(x) − v

)2]
dν(a, b) = 0 for all x ∈ R.(2.2)

Here, (Pt ) denotes the transition semigroup of Brownian motion (the definition
for the discrete case is similar). The proof of [4] can also be applied to � �= 0 and,
thus, Proposition 2.1 holds in the same way for initial distributions ν ∈ Mu,v .
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The restriction to � ∈ (−1,1) arises from our method of proof which exploits
a self-duality of the process which gives no information for � ∈ {−1,1}. Let us
briefly discuss the behavior of the limiting distributions in the boundary cases � ∈
{−1,1} which are well known in the literature and fit neatly into our result. First,
suppose (wt ) is a solution of the stepping stone model (see Example 1) and w0 ≡
w ∈ [0,1]. It was proved in [20] that

Lw(wt )
t→∞⇒ wδ1 + (1 − w)δ0,(2.3)

where δ1 (resp., δ0) denotes the Dirac distribution concentrated on the constant
function 1 (resp., 0). This can be reformulated in terms of perfectly anti-correlated
Brownian motions (B1,B2) as before: for � = −1, the pair (B1,B2) takes values
only on the straight line connecting (0,1) and (1,0), and stops at the boundaries.
Hence, the law of (B1

τ ,B2
τ ) is a mixture of δ(0,1) and δ(1,0) and the probability

of hitting (1,0) is equal to the probability of a one-dimensional Brownian mo-
tion started in w ∈ [0,1] hitting 1 before 0, which is w, and hence matches (2.3).
Second, let (wt ) be a solution of the parabolic Anderson model with Brownian
potential (see Example 2) and constant initial condition w0 ≡ w ≥ 0. In [21] it was
shown that

Lw(wt )
t→∞⇒ δ0.(2.4)

As discussed above, when viewed as a symbiotic branching process with � = 1,
this implies

Lw,w(ut , vt )
t→∞⇒ δ0,0.(2.5)

From the viewpoint of two perfectly positive-correlated Brownian motions, we
obtain the same result since they simple move on the diagonal dissecting the upper
right quadrant until they eventually get absorbed in the origin, that is, (B1

τ ,B2
τ ) =

(0,0) almost surely.
To summarize, we have seen that the weak longtime behavior (in the recurrent

case) of the classical models connected to symbiotic branching is appropriately
described by correlated Brownian motions hitting the boundary of the upper right
quadrant.

2.2. Nonalmost-sure behavior. In contrast to extinction in law, the almost-sure
behavior is very different. In the recurrent case for the mutually catalytic branching
model, Cox and Klenke [3] showed that, almost surely, there is no longtime local
extinction of any type, but in fact the locally predominant type changes infinitely
often. It is not hard to see that the same is true for symbiotic branching with � ∈
(−1,1). We do not give a proof since it follows from Proposition 2.1 along the
same lines as in [3].
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PROPOSITION 2.3. Let � ∈ (−1,1), κ > 0 and suppose (ut , vt ) is a spatial
symbiotic branching process in the recurrent case with initial distribution u0 =
u, v0 = v. Then, for all (u′, v′) ∈ {(x,0) :x ∈ R≥0} ∪ {(0, y) :y ∈ R≥0} and K ⊂ R

bounded,

P
u,v

[
lim inf
t→∞ sup

x∈K

‖(ut (x), vt (x)) − (u′, v′)‖ = 0
]
= 1,

respectively, for K ⊂ Z
d bounded,

P
u,v

[
lim inf
t→∞ sup

k∈K

‖(ut (k), vt (k)) − (u′, v′)‖ = 0
]
= 1.

Again, as in Remark 2.2, the result holds for random initial conditions of the
class Mu,v . Note that Proposition 2.3 depends strongly on the spatial structure
since in the nonspatial model almost sure convergence holds (see Proposition 4.4).

2.3. Longtime behavior of moments. In [1] the second moments of symbi-
otic branching processes are analyzed. This particular case admits a detailed study
since a moment duality (see Lemma 3.3) has a particularly simple structure which
allows one to reduce the study of the moments to that of moment generating func-
tions and Laplace transforms of local times. Here we are interested in the behavior
of moments as t tends to infinity. The two available dualities (self-duality and mo-
ment duality) are combined in two steps. First, a self-duality argument combined
with an equivalence between bounded moments of the exit time distribution and of
the exit point distribution for correlated Brownian motions stopped on exiting the
first quadrant is used to understand the effect of �. It turns out that for any p > 1
there are critical values, independent of κ , dividing regimes in which the moments
E

1,1[up
t ], E

1,1[ut(k)p] and E
1,1[ut(x)p] are bounded in t or grow to infinity. Sec-

ond, for p ∈ N, a perturbation argument combined with the first step and a moment
duality is used to analyze the growth to infinity in more detail.

The following critical curve captures the effect of �. Note that the definition is
independent of κ which will become important in the second step.

DEFINITION 2.4. We define the critical curve of symbiotic branching models
to be the real-valued function p : (−1,1) → R

+, given by

p(�) = π

π/2 + arctan(�/(
√

1 − �2))
.(2.6)

Its inverse will be denoted by �(p) for p > 1.

The critical curve is plotted in Figure 1. Here, �(35) and �(2) are marked.
Thirty-fifth moments are the key for the improved wavespeed result below and
the special case �(2) = 0 is discussed in [1]. We will see in Section 5 that this
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FIG. 1. The critical curve p(�),� ∈ (−1,1).

curve is closely connected with the exit distribution of (B1
τ ,B2

τ ) from the upper
right quadrant which appeared in Proposition 2.1 above. The first main theorem
states that the critical curve separates two regimes (independently of κ): that of
bounded moments and that of unbounded moments.

THEOREM 2.5. Suppose (ut , vt ) is a symbiotic branching process (either
nonspatial, continuous space or discrete space in arbitrary dimension) with initial
conditions u0 = v0 = 1. If � ∈ (−1,1), then, for any κ > 0, the following hold for
p > 1:

(i) In the recurrent case,

� < �(p) ⇔ E
1,1[up

t ],E
1,1[ut(k)p] and E

1,1[ut(x)p] are bounded in t.

(ii) In the transient case,

� < �(p) ⇒ E
1,1[ut (k)p] is bounded in t.

Due to symmetry the same holds for E
1,1[vp

t ], E
1,1[vt (k)p] and E

1,1[vt (x)p].
Note that the theorem provides information about all positive real moments,

not just integer moments. In the area below the critical curve in Figure 1, the mo-
ments remain bounded. On and above the critical curve, in the recurrent case, the
moments grow to infinity.
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REMARK 2.6. For � = −1 the curve could be extended with p(−1) = ∞.
In terms of the previous theorem this makes sense since for � = −1, symbiotic
branching processes with initial conditions u0 = v0 = 1 are bounded by 2. This is
justified by a simple observation: for initial conditions u0 = v0 ≡ 1/2 symbiotic
branching processes with � = −1 are solutions of the stepping stone model and,
hence, bounded by 1. Uniqueness in law of solutions implies that solutions (ut , vt )

with initial conditions (cu0, cv0) are equal in law to solutions c times solutions
with initial conditions (u0, v0).

With this first understanding of the effect of � on moments, we may discuss
integer moments for the discrete-space model in more detail. Let us first recall
some known results for solutions (wt ) of the parabolic Anderson model (see Ex-
ample 2) where only the parameter κ appears. Using Itô’s lemma, one sees that
m(t, k1, . . . , kn) := E

1[wt(k1) · · ·wt(kn)] solves the (discrete-space) partial differ-
ential equation

∂

∂t
m(t, k1, . . . , kn) = �m(t, k1, . . . , kn) + V (k1, . . . , kn)m(t, k1, . . . , kn)

with homogeneous initial conditions. Here, the potential V is given by

V (k1, . . . , kn) = κ
∑

1≤i<j≤n

δ0(ki − kj ).

Since H = −� − V is an n-particle Schrödinger operator, many properties are
known from the physics literature. In particular, it is well known that in the re-
current case (the potential is nonnegative) exponential growth of solutions holds
for any κ > 0. By contrast, in the transient case the discrete Laplacian requires a
stronger perturbation before we see exponential growth. Intuitively from the par-
ticle picture this should be true since the potential V only increases solutions if
particles meet, which occurs less frequently in the transient case. For the transient
case (see, e.g., [5] or [9] for more precise results), there is a decreasing sequence
κ(n) such that

E
1[wt(k)n] is bounded in t ⇔ κ < κ(n)

and for the Lyapunov exponents

γn(κ) := lim
t→∞

1

t
log E

1[wt(k)n] > 0 ⇔ κ > κ(n).

These results can be proved with the n-particle path-integral representation in
which solutions are expressed as

m(t, k1, . . . , kn) = E
[
eκ

∫ t
0 V (X1

s ,...,X
n
s ) ds],

where (X1
t ), . . . , (X

n
t ) are independent simple random walks started in k1, . . . , kn.
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Coming back to the symbiotic branching model, we ask whether or not the nth
Lyapunov exponents

γn(�, κ) := lim
t→∞

1

t
log E

1,1[ut(k)n]
exist and in which cases γn(�, κ) is strictly positive. As for the parabolic Anderson
model, there is a system of partial differential equations describing the moments
(see Proposition 16 of [8] for the continuous-space model) and an n-particle path-
integral representation of the moments. In addition to the independent motion,
the particles now carry a color which randomly changes if particles of the same
color stay at the same site (see Lemma 3.3). With L=

t denoting collision times of

particles of same color and L
�=
t denoting collision times of particles of different

colors, the path-integral representation of moments reads

E
1,1[ut(k)n] = E

[
eκ(L=

t +�L
�=
t )].

This representation is more involved than the path-integral representation for the
parabolic Anderson model since, in addition to the motion of particles, a second
stochastic mechanism is included. Nonetheless, we use it to prove the following
theorem which reveals that even in the recurrent case a nontrivial transition occurs.

THEOREM 2.7. For solutions of dSBM(�, κ)1,1, in any dimension, the follow-
ing hold for n ∈ N, n > 1:

(i) γn(�, κ) exists for any � ∈ [−1,1], κ > 0,
(ii) γn(�(n), κ) = 0 for any κ > 0,

(iii) for any � > �(n) there is a critical κ(n) such that γn(�, κ) > 0 if κ > κ(n).

Combined with Theorem 2.5, parts (ii) and (iii) emphasize the “criticality” of
the critical curve: for � < �(n), moments stay bounded, for � = �(n) moments
grow subexponentially fast to infinity, and for � > �(n) moments grow exponen-
tially fast if κ is large enough.

REMARK 2.8. As discussed above, for the parabolic Anderson model it is
natural that in the transient case perturbing the critical case does not immediately
yield exponential growth, whereas perturbing the recurrent case does immediately
lead to exponential growth. It is clear that in the transient case the gap in (iii) of
Theorem 2.7 is really necessary: for small κ moments of the parabolic Anderson
model are bounded. Since moments of symbiotic branching are dominated by mo-
ments of the parabolic Anderson model (see Lemma 3.3), for small κ moments are
bounded for all �.

In the case p /∈ N there seems to be no reason why exponential growth should
fail. Unfortunately, in this case there is no moment duality and hence the most
useful tool to analyze exponential growth is not available.
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CONJECTURE 2.9. In the recurrent case the moment diagram for symbiotic
branching (Figure 1) describes the moments as follows: pairs (�,p) below the crit-
ical curve correspond precisely to bounded moments, pairs at the critical curve
correspond to moments which grow subexponentially fast to infinity and pairs
above to the critical curve correspond to exponentially growing moments.

A deeper understanding of the Lyapunov exponents as functions of �, κ re-
mains mainly open (for an upper bound see Proposition 5.3). For second mo-
ments [�(2) = 0] this is carried out in [1]. It is shown that exponential growth
holds for � > 0 and arbitrary κ > 0 in the recurrent case, whereas only for
κ > 2/(�G∞(0,0)) in the transient case. Here G∞ denotes the Green function
of the simple random walk. The exponential (and subexponential) growth rates
were analyzed in detail by Tauberian theorems.

A direct application of Theorem 2.7 is so-called intermittency of solutions. One
says a spatial system with Lyapunov exponents γp is p-intermittent if

γp

p
<

γp+1

p + 1
.

Intermittent systems concentrate on few peaks with extremely high intensity
(see [10]). The results above show that as � tends to −1, solutions (at least for
large κ) are p-intermittent for p tending to infinity. This holds since for fixed �,
the pth moments are bounded if (�,p) lies below the critical curve. Increasing p

(and κ if necessary) there is a first p such that the pth Lyapunov exponent is pos-
itive. Intermittency for higher exponents suggests that the effect gets weaker. This
is to be expected since for � = −1 solutions with homogeneous initial conditions
are bounded and, hence, solutions do not produce high peaks at all. Making this
effect more precise, in particular combined with the effect of Proposition 2.1, is an
interesting task for the future.

2.4. Speed of propagation of the interface. Let us conclude with a direct ap-
plication of the moment bounds. Here, we will be concerned with an improved
upper bound on the speed of the propagation of the interface of continuous-space
symbiotic branching processes which served to some extent as the motivation for
this work. To explain this, we need to introduce the notion of the interface of
continuous-space symbiotic branching processes introduced in [8].

DEFINITION 2.10. The interface at time t of a solution (ut , vt ) of the symbi-
otic branching model cSBM(�, κ)u0,v0 with � ∈ [−1,1] is defined as

Ifct = cl{x :ut (x)vt (x) > 0},
where cl(A) denotes the closure of the set A in R.
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In particular, we will be interested in complementary Heaviside initial condi-
tions

u0(x) = 1R−(x) and v0(x) = 1R+(x), x ∈ R.

The main question addressed in [8] is whether for the above initial conditions
the so-called compact interface property holds, that is, whether the interface is
compact at each time almost surely. This is answered affirmatively in Theorem 6
in [8], together with the assertion that the interface propagates with at most linear
speed, that is, for each � ∈ [−1,1] there exists a constant c > 0 and a finite random-
time T0 so that almost surely for all T ≥ T0⋃

t≤T

Ifct ⊆ [−cT , cT ].

Heuristically, due to the scaling property of the symbiotic branching model
(Lemma 8 of [8]) one expects that the interface should move with a square-root
speed. Indeed, with the help of Theorem 2.5 one can strengthen their result, at
least for sufficiently small �, to obtain almost square-root speed.

THEOREM 2.11. Suppose (ut , vt ) is a solution of cSBM(�, κ)1
R− ,1

R+ with
� < �(35) and κ > 0. Then there is a constant C > 0 and a finite random-time T0
such that almost surely⋃

t≤T

Ifct ⊆ [−C
√

T log(T ),C
√

T log(T )
]

for all T > T0.

The restriction to � < �(35) is probably not necessary and only caused by the
technique of the proof. Though �(35) ≈ −0.9958 is rather close to −1, the result
is interesting. It shows that sub-linear speed of propagation is not restricted to situ-
ations in which solutions are uniformly bounded as they are for � = −1. The proof
is based on the proof of [8] for linear speed which carries over the proof of [24]
for the stepping stone model to nonbounded processes. We are able to strengthen
the result by using a better moment bound which is needed to circumvent the lack
of uniform boundedness.

REMARK 2.12. We believe that, at least for � ≤ 0, the speed of propagation
should be at most C′√t , for some suitable constant C′, that is, for all T greater
than some T ′ > 0, ⋃

t≤T

Ifct ⊆ [−C′√T ,C′√T
]
.

However, it seems unclear how to obtain such a refinement of Theroem 2.11 based
on our moment results and the method of [24] (resp., [8]). As subexponential
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bounds of higher moments cannot be avoided (see the proof of the fluctuation
term estimate Lemma 6.2), our results on the behavior of higher moments show
that at present, in light of Conjecture 2.9, one can only hope for stronger results
for very small �.

To overcome this limitation, new methods need to be employed. The authors
think that a possible approach could be based on the scaling property (Lemma 8 of
[8]) and recent results by Klenke and Oeler [13]. Recall that the scaling property
states that if (ut , vt ) is a solution to cSBM(�, κ)u0,v0 , then

(ut (x)K, vt (x)K) := (
uKt

(√
Kx

)
, vKt

(√
Kx

))
, x ∈ R,K > 0,

is a solution to cSBM(�,K · κ)uK
0 ,vK

0
(with suitably transformed initial states

uK
0 , vK

0 ). In other words, a diffusive time–space rescaling leads to the original
model with a suitably increased branching rate κ . Klenke and Oeler [13] show
that, at least for the mutually catalytic model in discrete space, a nontrivial lim-
iting process as κ → ∞ exists. This limit is called “infinite rate mutually cat-
alytic branching process” (see also [11, 12] for a further discusion). In particular,
in Corollary 1.2 of [13] they claim that, under suitable assumptions, a nontrivial
interface for the limiting process exists, which would in turn predict a square-root
speed of propagation in our case. However, to make this approach rigorous is be-
yond the scope of the present paper.

REMARK 2.13 (Shape of the interface). Note that our results give only lim-
ited information about the shape of the interface. For the case � = −1, that is, with
locally constant total population size, it is shown in [16] that there exists a unique
stationary interface law, which may therefore be interpreted as a “stationary wave”
whose position fluctuates at the boundaries, according to [24], like a Brownian
motion, hence explaining the square-root speed (note that for both results, suitable
bounds on fourth mixed moments are required). However, for � > −1, the pop-
ulation sizes of the interface are expected to fluctuate significantly and it seems
unclear how this affects the shape and speed of the interface, in particular the for-
mation of a “stationary wave.” The significance of fourth mixed moments might
even lead to a phase-transition in �. This gives rise to many interesting open ques-
tions.

3. Basic properties and duality. In this section we review the setting and
properties of the discrete-space model, whereas for continuous-space we refer
to [8]. Note that instead of using the state space of tempered functions alternatively
we may use a suitable Liggett–Spitzer space. As the results are only presented for
the discrete Laplacian this does not play a crucial role. For a discussion of the
mutually catalytic branching model in the Liggett–Spitzer space see [2].

3.1. Basic properties. For functions f,g : Zd → R we abbreviate 〈f,g〉 =∑
k f (k)g(k). With φλ(k) = eλ|k| the space of pairs of tempered sequences is de-
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fined by

M2
tem = {(u, v)|u, v : Zd → R≥0, 〈u,φλ〉, 〈v,φλ〉 < ∞ ∀λ < 0}.

The space of continuous paths is denoted by

�tem = C(R≥0,M
2
tem).

Similarly, the space of pairs of rapidly decreasing sequences is defined by

M2
rap = {(u, v)|u, v : Zd → R≥0, 〈u,φλ〉, 〈v,φλ〉 < ∞ ∀λ > 0}

and the corresponding path space by

�rap = C(R≥0,M
2
rap).

Weak solutions are defined as in [7] for � = 0. In much the same way as for Theo-
rems 1.1 and 2.2 of [7], we obtain existence and the Green-function representation.

PROPOSITION 3.1. Suppose (u0, v0) ∈ M2
tem (resp., M2

rap), � ∈ [−1,1] and
κ > 0. Then there is a weak solution of dSBM(�, κ)u0,v0 such that (ut , vt ) ∈ �tem
(resp., �rap) and for all (φ,ψ) ∈ M2

rap (resp., M2
tem)

〈ut , φ〉 = 〈u0,Ptφ〉 + ∑
j∈Zd

∫ t

0
Pt−sφ(j)

√
κus(j)vs(j) dB1

s (j),(3.1)

〈vt ,ψ〉 = 〈v0,Ptψ〉 + ∑
j∈Zd

∫ t

0
Pt−sψ(j)

√
κus(j)vs(j) dB2

s (j),(3.2)

where Ptf (k) = ∑
j∈Zd pt (j, k)f (j) is the semigroup associated to the simple

random walk. In particular, we have

ut (k) = Ptu0(k) + ∑
j∈Zd

∫ t

0
pt−s(j, k)

√
κus(j)vs(j) dB1

s (j),(3.3)

vt (k) = Ptv0(k) + ∑
j∈Zd

∫ t

0
pt−s(j, k)

√
κus(j)vs(j) dB2

s (j).(3.4)

The covariation structure of the Brownian motions is given by (1.6).

In fact, (3.1), (3.2) can be seen as the discrete-space versions of the martingale
problem of Definition 3 in [8]. Further, (3.3), (3.4) are the discrete-space versions
of the convolution form given in Corollary 20 of [8].

For the proofs of the longtime behavior of laws and moments, the key step is to
transfer to the total mass processes 〈ut ,1〉, 〈vt ,1〉. To this end, in a similar way to
Proposition 3.1, we define

M2
F = {(u, v)|u, v : Zd → R≥0, 〈u,1〉, 〈v,1〉 < ∞}
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and

�F = C(R≥0,M
2
F ).

For summable initial conditions we obtain the following crucial martingale char-
acterization.

PROPOSITION 3.2. If (u0, v0) ∈ M2
F , then each solution of dSBM(�, κ)u0,v0

has the following properties: (ut , vt ) ∈ �F and 〈ut ,1〉, 〈vt ,1〉 are nonnegative,
continuous, square-integrable martingales with square-functions

[〈u·,1〉]t = [〈v·,1〉]t = κ

∫ t

0
〈us, vs〉ds

and

[〈u·,1〉, 〈v·,1〉]t = �κ

∫ t

0
〈us, vs〉ds.

We omit the proofs since they are basically standard. The only step where one
needs to be careful is the existence proof. As usual for such models one first re-
stricts the space to bounded subsets (boxes) of Z

d , where standard Markov process
theory applies. Enlarging the boxes one obtains a sequence of processes which are
shown to converge to a limiting process solving dSBM(�, κ)u0,v0 . To prove tight-
ness of the approximating sequence, the moments need to be bounded uniformly in
the size of the boxes. Here, more care than for � = 0 in [7] is needed. The uniform
moment bound can, for instance, be achieved using a colored particle moment du-
ality for each box similar to the one of Lemma 3.3.

3.2. Dualities. The symbiotic branching model exhibits an exceptionally rich
duality structure, providing powerful tools for the analysis of the longtime proper-
ties.

3.2.1. Colored particle moment dual. We now recall the two-colors particle
moment-duality introduced in Section 3.1 of [8]. Since the dual Markov process is
presented rigorously in [8] we only sketch the pathwise behavior. To find a suitable
description of the mixed moment

E
u0,v0[ut (k1) · · ·ut (kn)vt (kn+1) · · ·vt (kn+m)],

n+m particles are located in Z
d . Each particle moves as a continuous-time simple

random walk independent of all other particles. At time 0, n particles of color 1 are
located at positions k1, . . . , kn and m particles of color 2 are located at positions
kn+1, . . . , kn+m. For each pair of particles, one of the pair changes color when the
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time the two particles have spent in the same site, while both have same color, first
exceeds an (independent) exponential time with parameter κ . Let

L=
t = total collision time of all pairs of same colors up to time t,

L
�=
t = total collision time of all pairs of different colors up to time t,

l1
t (a) = number of particles of color 1 at site a at time t,

l2
t (a) = number of particles of color 2 at site a at time t,

(u0, v0)
lt = ∏

a∈Zd

u0(a)l
1
t (a)v0(a)l

2
t (a).

Note that since there are only n+m particles, the infinite product is actually a finite
product and hence well defined. The following lemma is taken from Section 3
of [8].

LEMMA 3.3. Let (ut , vt ) be a solution of dSBM(�, κ)u0,v0 , κ > 0 and � ∈
[−1,1]. Then, for any ki ∈ Z

d , t ≥ 0,

E
u0,v0[ut (k1) · · ·ut (kn)vt (kn+1) · · ·vt (kn+m)] = E

[
(u0, v0)

lt eκ(L=
t +�L

�=
t )],

where the dual process behaves as explained above.

Note that for homogeneous initial conditions u0 = v0 = 1, the first factor in the
expectation of the right-hand side equals 1. In the special case � = 1, u0 = v0 = 1
Lemma 3.3 was already stated in [5], reproved in [9] and used to analyze the Lya-
punov exponents of the parabolic Anderson model.

For � �= 1, the difficulty of the dual process is based on the two stochastic ef-
fects: on the one hand, one has to deal with collision times of random walks which
were analyzed in [9]; additionally, particles have colors either 1 or 2 which change
dynamically.

REMARK 3.4. Similar dualities hold for cSBM and SBM. For continuous-
space, the random walks are replaced by Brownian motions and the collision times
of the random walks by collision local times of the Brownian motions (see Sec-
tion 4.1 in [8]). The simplest case is the nonspatial symbiotic branching model
where the particles stay at the same site and local times are replaced by real times
(see Theorem 3.2 of [19] or Proposition A5 of [6]).

3.2.2. Self-duality. Mytnik [18] introduced a self-duality for the continuous-
space mutually catalytic branching model to obtain uniqueness of solutions of the
corresponding martingale problem. This can be extended to symbiotic branching
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models for � ∈ (−1,1) as shown in Proposition 5 of [8]. The discrete-space self-
duality for � = 0 was proved in Theorem 2.4 of [7]. We first need more spaces of
sequences:

E = {(x, y) : (x, |y|) ∈ M2
tem, |y(k)| ≤ x(k) ∀k ∈ Z

d}
and

Ẽ = {(x, y) ∈ E :x ∈ Mrap} ⊃ {(x, y) ∈ E :x has bounded support} = Ẽf .

In the sequel, the space E and its subspaces will be used for (x, y) = (ut +vt , ut −
vt ). The duality function for � ∈ (−1,1) maps E × Ẽ to C via

H(u, v, ũ, ṽ) = exp
(−√

1 − �〈u, ũ〉 + i
√

1 + �〈v, ṽ〉).(3.5)

With this definition the generalized Mytnik duality states:

LEMMA 3.5. For � ∈ (−1,1), κ > 0, (u0, v0) ∈ M2
tem and (ũ0, ṽ0) ∈ M2

rap
let (ut , vt ) be a solution of dSBM(�, κ)u0,v0 and (ũt , ṽt ) be a solution of
dSBM(�, κ)ũ0,ṽ0 . Then the following holds:

E
u0,v0[H(ut + vt , ut − vt , ũ0 + ṽ0, ũ0 − ṽ0)]

= E
ũ0,ṽ0[H(u0 + v0, u0 − v0, ũt + ṽt , ũt − ṽt )].

Analogously, the self-duality relation holds for the nonspatial model with dual-
ity function

H 0(u, v, ũ, ṽ) = exp
(−√

1 − �uũ + i
√

1 + �vṽ
)
,

mapping (R≥0 × R≥0)
2 to C.

4. Weak longtime convergence. In this section we discuss weak longtime
convergence of symbiotic branching models and prove Proposition 2.1. We pro-
ceed in two steps: first, we prove convergence in law to some limit law following
the proof of [7] for � = 0. Second, to characterize the limit law for the spatial
models, we reduce the problem to the nonspatial model.

PROPOSITION 4.1. Let � ∈ (−1,1), κ > 0 and (ut , vt ) a solution of either
cSBM(�, κ)u0,v0 or dSBM(�, κ)u0,v0 with initial conditions u0 = u, v0 = v. Then,
as t → ∞, the law of (ut , vt ) converges weakly on M2

tem to some limit (u∞, v∞).

PROOF. The proof is only given for the discrete spatial case and the continu-
ous case is completely analogous. Let us first recall the strategy of [7] for � = 0
which can also be applied with the generalized self-duality required here. Con-
vergence of (ut , vt ) in M2

tem follows from convergence of (ut + vt , ut − vt ) in E.
Using Lemma 2.3(c) of [7], it suffices to show convergence of E

u,v[H(ut +vt , ut −
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vt , φ,ψ)] for all (φ,ψ) ∈ Ẽf . Furthermore, the limit (u∞, v∞) is uniquely deter-
mined by E

u,v[H(u∞ + v∞, u∞ − v∞, φ,ψ)] (see Lemma 2.3(b) of [7]). Hence,
it suffices to show convergence of

E
u,v[H(ut + vt , ut − vt , φ,ψ)] = E

u,v[
e−√

1−�〈ut+vt ,φ〉+i
√

1+�〈ut−vt ,ψ〉],(4.1)

for all (φ,ψ) ∈ Ẽf . Note that the technical condition of Lemma 2.3(c) of [7] is
fullfilled since due to Proposition 3.1

E
u,v[〈ut + vt , φ−λ〉] = (u + v)〈1,Ptφ−λ〉 < C < ∞.

To ensure convergence of (4.1) we employ the generalized Mytnik self-duality of
Lemma 3.5 with ũ0 := φ+ψ

2 , ṽ0 := φ−ψ
2 :

E
u,v[

e−√
1−�〈ut+vt ,φ〉+i

√
1+�〈ut−vt ,ψ〉]

= E
u0,v0

[
e−√

1−�〈ut+vt ,ũ0+ṽ0〉+i
√

1+�〈ut−vt ,ũ0−ṽ0〉]
(4.2)

= E
ũ0,ṽ0

[
e−√

1−�〈u0+v0,ũt+ṽt 〉+i
√

1+�〈u0−v0,ũt−ṽt 〉]
= E

ũ0,ṽ0
[
e−√

1−�(u+v)〈1,ũt+ṽt 〉+i
√

1+�(u−v)〈1,ũt−ṽt 〉].
By assumption, ũ0, ṽ0 have compact support and hence by Proposition 3.2 the
total-mass processes 〈1, ũt 〉 and 〈1, ṽt 〉 are nonnegative martingales. By the mar-
tingale convergence theorem 〈1, ũt 〉 and 〈1, ṽt 〉 converge almost surely to finite
limits denoted by 〈1, ũ∞〉, 〈1, ṽ∞〉. Finally, the dominated convergence theorem
implies convergence of the right-hand side of (4.2) to

E
ũ0,ṽ0

[
e−√

1−�(u+v)〈1,ũ∞+ṽ∞〉+i
√

1+�(u−v)〈1,ũ∞−ṽ∞〉].(4.3)

Combining the above, we have proved convergence of

E
u,v[

e−√
1−�〈ut+vt ,φ〉+i

√
1+�〈ut−vt ,ψ〉],

which ensures weak convergence of (ut , vt ) in M2
tem to some limit which is

uniquely determined by (4.3). �

Again, as in Remark 2.2, the previous proposition can be proved for nondeter-
ministic initial conditions as in [4].

The rest of this section is devoted to identifying the limit (u∞, v∞) in the
recurrent case. Before completing the proof of Theorem 2.1 we discuss a ver-
sion of Knight’s extension of the Dubins–Schwarz theorem (see [14], 3.4.16) for
nonorthogonal continuous local martingales.

LEMMA 4.2. Let (Nt) and (Mt) be continuous local martingales with N0 =
M0 = 0 almost surely. Assume further that, for t ≥ 0,

[M·,M·]t = [N·,N·]t and [M·,N·]t = �[M·,M·]t a.s.,
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where � ∈ [−1,1]. If [M·,M·]∞ = ∞ a.s., then

(B1
t ,B2

t ) := (
MT (t),NT (t)

)
is a pair of Brownian motions with covariances [B1· ,B2· ]t = �t , where

T (t) = inf{s : [M·,M·]s > t}.(4.4)

PROOF. It follows from the Dubins–Schwarz theorem that B1,B2 are each
Brownian motions. Further, by the definition of T (t) we obtain the claim

[B1· ,B2· ]t = [M·,N·]T (t) = �[M·,M·]T (t) = �t. �

REMARK 4.3. If T ∗ := [M·,M·]∞ < ∞ the situation becomes slightly more
delicate but one can use a local version of Lemma 4.2. Indeed, define, for t ≥ 0,

B1
t :=

{
MT (t), for t < T ∗,
MT ∗, for t ≥ T ∗,

(4.5)

where the time-change T is given in (4.4) and define B2 analogously for N (re-
call that [M·,M·]t = [N·,N·]t ). Then the processes B1,B2 are Brownian motions
stopped at time T ∗. The covariance is again given by

[B1· ,B2· ]t∧T ∗ = �(t ∧ T ∗), t ≥ 0.

For the rest of this section let B1,B2 be standard Brownian motions with co-
variance

[B1· ,B2· ]t = �t(4.6)

started in u, v, denote their expectations by Eu,v , and let

τ = inf{t :B1
t B2

t = 0}.
The above discussion can now be used to understand the longtime behavior

of symbiotic branching processes. We start by giving a proof for the nonspatial
symbiotic branching model and then modify the proof to capture the corresponding
result for the spatial models.

PROPOSITION 4.4. Let (ut , vt ) be a solution of SBM(�, κ)u,v . Then, as
t → ∞, (ut , vt ) converges almost surely to some (u∞, v∞). Furthermore,
Lu,v(u∞, v∞) = Lu,v(B1

τ ,B2
τ ) with B1

τ ,B2
τ from Proposition 2.1.

PROOF. Solutions of the nonspatial symbiotic branching model are nonnega-
tive martingales and hence converge almost surely. This implies the first part of the
claim and it only remains to characterize the limit. Obviously, the L2-martingales
(ut ), (vt ) satisfy the cross-variation structure assumptions of Lemma 4.2 and,
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thus, (ut , vt ) = (B1
T −1(t)

,B2
T −1(t)

). To obtain the result, we need to check that

T −1(∞) = τ . By definition of SBM, the time-change is given by

T −1(t) = [u·, u·]t =
[∫ ·

0

√
κusus dB1

s ,

∫ ·
0

√
κusvs dB1

s

]
t

= κ

∫ t

0
usvs ds.(4.7)

To see that T −1(∞) = τ < ∞, first note that T −1(t) ≤ τ for all t ≥ 0. This is true
since ut = B1

T −1(t)
, vt = B2

T −1(t)
and solutions of SBM are nonnegative. To argue

that T −1(t) increases to τ , more care is needed. Since the martingales converge
almost surely, T −1(t) converges to some value a ≤ τ . Suppose a < τ , then (ut , vt )

converges to some (x, y) with x, y > 0. This yields a contradiction since T −1(t) =
κ

∫ t
0 usvs ds would increase to infinity. Hence, almost surely,

(ut , vt ) = (
B1

T −1(t)
,B2

T −1(t)

) t→∞→ (
B1

T −1(∞)
,B2

T −1(∞)

) = (B1
τ ,B2

τ ). �

In particular, the proof of Proposition 4.4 provides an important relation for
(B1

τ ,B2
τ ). As remarked below Lemma 3.5, the self-duality also works in the non-

spatial model:

E
u0,v0

[
e−√

1−�(ut+vt )(ũ0+ṽ0)+i
√

1+�(ut−vt )(ũ0−ṽ0)
]

= E
ũ0,ṽ0

[
e−√

1−�(u0+v0)(ũt+ṽt )+i
√

1+�(u0−v0)(ũt−ṽt )
]
,

where both (ut , vt ) and (ũt , ṽt ) are solutions of SBM(�, κ) with different initial
conditions. As shown in the proof of Proposition 4.4, (ut , vt ) [resp., (ũt , ṽt )] con-
verges almost surely to (B1

τ ,B2
τ ) with initial condition (u0, v0) [resp., (ũ0, ṽ0)].

Using dominated convergence, this shows the following duality relation for
(B1

τ ,B2
τ ) when started in initial conditions (u, v), (ũ, ṽ):

Eu,v[H 0(B1
τ + B2

τ ,B1
τ − B2

τ , ũ + ṽ, ũ − ṽ)]
(4.8)

= Eũ,ṽ[H 0(B1
τ + B2

τ ,B1
τ − B2

τ , u + v,u − v)].

PROOF OF PROPOSITION 2.1. Again, the proof is only presented in the dis-
crete spatial setting since the continuous case is analogous. We retain the notation
of the proof of Proposition 4.1 where we showed that, as t tends to infinity,

E
u,v[

e−√
1−�〈ut+vt ,φ〉+i

√
1+�〈ut−vt ,ψ〉]

→ E
(φ+ψ)/2,(φ−ψ)/2[

e−√
1−�(u+v)〈1,ũ∞+ṽ∞〉+i

√
1+�(u−v)〈1,ũ∞−ṽ∞〉].

Let us specify the limit law as for the nonspatial symbiotic branching process.
As seen in Proposition 3.2 the total-mass processes ūt := 〈ũt ,1〉 and v̄t :=
〈ṽt ,1〉 are nonnegative continuous L2-martingales with cross-variations [ū·, v̄·]t =
�[ū·, ū·]t = �[v̄·, v̄·]t , t ≥ 0. Thus, by Lemma 4.2, reasoning as in (4.7), (ūt , v̄t ) =
(B1

T −1(t)
,B2

T −1(t)
), where B1,B2 are Brownian motions started in ū0 = 〈φ+ψ

2 ,1〉,
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v̄0 = 〈φ−ψ
2 ,1〉 with covariance [B1· ,B2· ]t = �t and T −1(t) = κ

∫ t
0 〈us, vs〉ds.

Again, we need to show that T −1(∞) = τ . This is much more subtle than in the
nonspatial case since the quadratic variation might level off even if both total-
mass processes ūt , v̄t are strictly positive. In [7] it was shown that for � = 0,
almost surely, this does not happen in the recurrent case [cf. the proof of their
Theorem 1.2(b)]. Their proof can be used directly for � ∈ (−1,1). Hence, almost
surely,

(〈ũt ,1〉, 〈ṽt ,1〉) t→∞→ (B1
τ ,B2

τ ).(4.9)

Combining the above discussion with (4.3), we are able to determine the limit.
First, we derived

E
u,v[

e−√
1−�〈ut+vt ,φ〉+i

√
1+�〈ut−vt ,ψ〉]

t→∞→ E〈(φ+ψ)/2,1〉,〈(φ−ψ)/2,1〉[e−√
1−�(u+v)(B1

τ +B2
τ )+i

√
1+�(u−v)(B1

τ −B2
τ )].

To use Lemma 2.3(c) of [7] we manipulate the right-hand side using (4.8):

E〈(φ+ψ)/2,1〉,〈(φ−ψ)/2,1〉[e−√
1−�(u+v)(B1

τ +B2
τ )+i

√
1+�(u−v)(B1

τ −B2
τ )]

= E〈(φ+ψ)/2,1〉,〈(φ−ψ)/2,1〉[H 0(B1
τ + B2

τ ,B1
τ − B2

τ , u + v,u − v)]
= Eu,v[H 0(B1

τ + B2
τ ,B1

τ − B2
τ , 〈φ,1〉, 〈ψ,1〉)]

= Eu,v[H(B̄1
τ + B̄2

τ , B̄1
τ − B̄2

τ , φ,ψ)],
where, as in Proposition 2.1, B̄1

τ (resp., B̄2
τ ) denotes the constant function taking

only the (random) value B1
τ (resp., B2

τ ). In total we have

E
u,v[H(ut + vt , ut − vt , φ,ψ)] t→∞→ Eu,v[H(B̄1

τ + B̄2
τ , B̄1

τ − B̄2
τ , φ,ψ)],

which implies weak convergence in M2
tem of (ut , vt ) to (B̄1

τ , B̄2
τ ) by Lemma 2.3(c)

of [7]. �

5. Moments. In this section we prove Theorems 2.5 and 2.7. Before giving
the proofs we prove an equivalence for moments of correlated Brownian motions.

5.1. Moments of the exit-point and exit-time distribution of correlated Brown-
ian motions in a quadrant. Let � ∈ (−1,1), u, v > 0 and B1,B2 be Brownian
motions started in u, v with

〈B1· ,B2· 〉t = �t.(5.1)

The starting points of Brownian motions will be indicated by superscripts in prob-
abilities and expectations. Further, let

τB = inf{t ≥ 0 :B1
t B2

t = 0}.(5.2)
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THEOREM 5.1. Let p > 0 and u, v > 0. Under the above assumptions, the
following conditions are equivalent:

(i)

p <
π

π/2 + arctan(�/(
√

1 − �2))
,

(ii)

Eu,v[(τB)p/2] < ∞,

(iii)

Eu,v[|(B1
τB ,B2

τB )|p] < ∞.

PROOF. We start with the proof of the equivalence of (i) and (ii). Define a
cone in the plane with angle θ ∈ (0,2π) by

C(ϕ) = {reiφ : r ≥ 0,0 ≤ φ ≤ ϕ}
and denote its boundary by ∂C(ϕ). Note that with this definition, the positive real
line is always contained in C(ϕ). Further, we define, for � ∈ (−1,1), a sector in
R

2 by

S(�) =
{
(x, y) ∈ R

2 :x ≥ 0, y ≥ − �√
1 − �2

x

}

and denote by ∂S(�) its boundary. Note that this time, the positive imaginary axis
is always in S(�) and that the angle of the sector at the origin is given by

θ := π

2
+ arctan

(
�√

1 − �2

)
.

To transform the correlated Brownian motions B1,B2 to planar Brownian motion

we use the simple fact that W 1 := B1,W 2 := (
B2−�B1√

1−�2
) defines a pair of indepen-

dent Brownian motions started in u, (
v−�u√

1−�2
) satisfying (B1,B2) = (W 1, �W 1 +√

1 − �2W 2). By the definition of S(�), the planar Brownian motion (W 1,W 2)

started in (u, (
v−�u√

1−�2
)) hits ∂S(�) if and only if the correlated Brownian motions

B1,B2 started in u, v hit ∂C(π
2 ). Hence, for τB as in (5.2), we have

τB = τW := inf{t ≥ 0 : (W 1
t ,W 2

t ) ∈ ∂S(�)}.(5.3)

Since planar Brownian motion is rotation invariant, S(�) may be rotated to agree
with the cone C(θ), without changing the exit time. Obviously, with the corre-
sponding rotated initial conditions, the law of the first exit time τC(θ) from the
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cone C(θ) agrees with the law of τW . For planar Brownian motion in a cone C(θ)

it is well known (see [23], Theorem 2) that

Ex,y[(
τC(θ)

)p/2]
< ∞ ⇔ p <

π

θ
,(5.4)

independently of x, y. (5.3) and (5.4) now imply the equivalence of (i) and (ii) and
independence of u, v.

The proof of the equivalence of (i) and (iii) is via conformal transformation
of the cone C(θ) to the upper half-plane. Indeed, we are going to calculate the
densities of the exit-point distributions

P u,v(B1
τB = 0,B2

τB ≥ y), P u,v(B1
τB ≤ x,B2

τB = 0).(5.5)

We proceed in three steps: after reducing to independent Brownian motions in S(�)

as for the exit time, we rotate S(�) to C(θ) and, finally, stretch the cone to end up
with the upper half-plane.

Recall that the first exit of (B1,B2) happens at position (0, y) ∈ ∂C(π
2 ) if and

only if the first exit of (W 1,W 2) takes place at (0,
y√

1−�2
) ∈ ∂S(�). Hence, (5.5)

transforms to

P u,v(B1
τB = 0,B2

τB ≥ y)
(5.6)

= P u,(v−�u)/
√

1−�2
(
W 1

τW = 0,W 2
τW ≥ y√

1 − �2

)
.

In a similar fashion one obtains

P u,v(B1
τB ≤ x,B2

τB = 0)
(5.7)

= P u,(v−�u)/
√

1−�2
(
W 1

τW ≤ x,W 2
τW = − �√

1 − �2
W 1

τW

)
.

We represent the transformed initial conditions (z1, z2) = (u,
v−�u√

1−�2
) ∈ S(�) in

polar coordinates, that is,

z1 =
√

u2 + (v − �u)2

1 − �2 cos
(

arctan
(

v − �u

u
√

1 − �2

))
,

z2 =
√

u2 + (v − �u)2

1 − �2 sin
(

arctan
(

v − �u

u
√

1 − �2

))
.

For the rotation we add the angle arctan(
�√

1−�2
) to get the new initial condition.

Finally, to map the cone C(θ) conformally to the upper half-plane H, we apply the
map z �→ zπ/θ which maps C(θ) onto H. Using conformal invariance of Brown-
ian motion (e.g., Lemma 7.19 of [15]), the problem is reduced to the computation
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of the exit distribution of planar (time-changed) Brownian motion from the upper
half-plane. Indeed, due to the random time change the (almost surely finite) exit
time changes but not the distribution of the exit points, which is Cauchy (see The-
orem 2.37 of [15]). Thus, to obtain the distribution of the exit points explicitly it,
only remains to specify the transformed initial condition z̃1, z̃2, which is given by

z̃1 =
(
u2 + (v − �u)2

1 − �2

)π/(2θ)

× cos
(

π

θ

(
arctan

(
v − �u√
1 − �2u

)
+ arctan

(
�√

1 − �2

)))
,

z̃2 =
(
u2 + (v − �u)2

1 − �2

)π/(2θ)

× sin
(

π

θ

(
arctan

(
v − �u√
1 − �2u

)
+ arctan

(
�√

1 − �2

)))
.

Now, let W̃ 1, W̃ 2 be two independent Brownian motions with W̃ 1
0 = z̃1, W̃

2
0 = z̃2

and

τ W̃ := inf{t > 0 : W̃ 2
t = 0}.

Then, by (5.6), (5.7),

P u,v(B1
τB = 0,B2

τB ≥ y) = P u,(v−�u)/
√

1−�2
(
W 1

τW = 0,W 2
τW ≥ y√

1 − �2

)

= P z̃1,z̃2

(
W̃ 1

τ W̃
≤ −

(
y√

1 − �2

)π/θ)
,

P u,v(B1
τB ≤ x,B2

τB = 0) = P u,(v−�u)/
√

1−�2
(
W 1

τW ≤ x,W 2
τW = − �√

1 − �2
W 1

τW

)

= P z̃1,z̃2

(
0 ≤ W̃ 1

τ W̃
≤

(
x

(
1 + �2

1 − �2

)1/2)π/θ)

= P z̃1,z̃2

(
0 ≤ W̃ 1

τ W̃
≤

(
x√

1 − �2

)π/θ)
.

Explicit manipulations of the Cauchy distribution yield

P u,v(B1
τB = 0,B2

τB ≥ y)
(5.8)

=
∫ ∞
y

1

πz̃2

√
1 − �2

π/θ

π/θrπ/θ−1

1 + (((r/
√

1 − �2)π/θ + z̃1)/z̃2)2
dr,
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P u,v(B1
τB ≤ x,B2

τB = 0)
(5.9)

=
∫ x

0

1

πz̃2

√
1 − �2

π/θ

π/θrπ/θ−1

1 + (((r/
√

1 − �2)π/θ − z̃1)/z̃2)2
dr.

Finally, noting that
∫ ∞

0
xp+α−1

1+x2α dx < ∞ if and only if p < α, we deduce from (5.8)
and (5.9) that

Eu,v[|(B1
τB ,B2

τB )|p] < ∞ if and only if p <
π

θ
. �

5.2. Proof of Theorem 2.5. The proof relies on a combination of the self-
duality based technique of the proof of Proposition 2.3 and the close relation
between the moments of the exit-time and exit-point distribution of correlated
Brownian motions obtained in Theorem 5.1.

PROOF OF THEOREM 2.5. We proceed in several steps. First, the result for the
nonspatial model is proved and thereafter the results for the discrete-space and the
continuous-space models. Finally, we present the argument in the transient case.
In the following we use the definition of B1,B2 and τ from Proposition 2.1.

Step 1. Suppose (ut , vt ) is a solution of SBM(�, κ)1,1.
“⇒”: We first assume � < �(p), in which case Theorem 5.1 implies

E1,1[τp/2] < ∞. As argued in the proof of Proposition 4.4, ut is a nonnegative
martingale and due to the same arguments satisfies E

1,1[[u·]p/2
t ] ≤ E1,1[τp/2] <

∞ for all t ≥ 0 and κ > 0. Considering ūt = ut − u0 = ut − 1, we apply the
Burkholder–Davis–Gundy inequality to get

E
1,1[up

t ] = E
1,1[(ūt + 1)p]

= E
1,1[

1{ūt≤1}(ūt + 1)p
] + E

1,1[
1{ūt>1}(ūt + 1)p

]
≤ Cp + CpE

1,1[ūp
t ]

≤ Cp + CpE
1,1

[
sup

0≤s≤t

ūp
s

]

≤ Cp + C′
pE

1,1[[ū·]p/2
t ] < ∞

independently of t and κ .
“⇐.” Conversely, for � ≥ �(p), Theorem 5.1 implies that E1,1[(B1

τ )p] = ∞.
Using Fatou’s lemma and almost sure convergence of ut to B1

τ , the proof for the
nonspatial case is finished with

lim inf
t→∞ E

1,1[up
t ] ≥ E

1,1[up∞] = E1,1[(Bτ )
p] = ∞.

Again, this lower bound is independent of κ .
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Step 2. The proof for dSBM(�, κ)1,1 is started by reducing the moments for ho-
mogeneous initial conditions to finite initial conditions. Indeed, employing Lem-
ma 3.5 with φ = ψ = θ

2 1k , where 1k denotes the indicator function of site k ∈ Z
d ,

gives

E
1,1[

e−√
1−�θ(ut (k)+vt (k))] = E

1,1[
e−√

1−�〈ut+vt ,φ+ψ〉]
= E

φ,ψ [
e−√

1−�〈1+1,ũt+ṽt 〉]
= E

1k,1k
[
e−√

1−�θ〈1,ũt+ṽt 〉],
where we used the argument of Remark 2.6. Note that, due to our choice of ini-
tial conditions, the complex part of the self-duality vanishes. Since the above is a
Laplace transform identity, we have

L1,1(
ut (k) + vt (k)

) = L1k,1k (〈1, ũt 〉 + 〈1, ṽt 〉)
and hence

E
1,1[(

ut (k) + vt (k)
)p] = E

1k,1k [(〈1, ũt 〉 + 〈1, ṽt 〉)p].(5.10)

We are now prepared to finish the proof of the theorem for the discrete case.
“⇒.” Suppose � < �(p). Let Mt = 〈1, ũt 〉 + 〈1, ṽt 〉, which due to Lemma 3.2

is a square-integrable martingale with quadratic variation

[M·]t = [〈1, ũ·〉]t + [〈1, ṽ·〉]t + 2[〈1, ũ·〉, 〈1, ṽ·〉]t = (2 + 2�)[〈1, ũ·〉]t .
To apply the Burkholder–Davis–Gundy inequality, we switch again from M to
M̄t = Mt − M0, which is a martingale null at zero. Hence,

E
1k,1k [Mp

t ] = E
1k,1k [(M̄t + M0)

p] ≤ Cp + CpE
1k,1k [M̄p

t ].
Then we get from (5.10) and the Burkholder–Davis–Gundy inequality

E
1,1[(

ut (k) + vt (k)
)p] ≤ Cp + CpE

1k,1k [M̄p
t ]

≤ Cp + CpE
1k,1k

[
sup

0≤s≤t

M̄p
s

]

≤ Cp + C′
pE

1k,1k [[M̄·]p/2
t ]

= Cp + C′
p(2 + 2�)p/2

E
1k,1k [[〈1, ũ·〉]p/2

t ]
for some constants Cp,C′

p independent of t and κ . As in the proof of Theorem 2.1,
the random time change which makes the pair of total masses a pair of correlated
Brownian motions is bounded by τ , that is, [〈1, ũ·〉]t ≤ τ for all t ≥ 0. This yields
by Theorem 5.1

E
1,1[ut(k)p] ≤ E

1,1[(
ut (k) + vt (k)

)p] ≤ Cp + C′
p(2 + 2�)p/2E1,1[τp/2] < ∞.
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“⇐.” Suppose � ≥ �(p). As in the proof of Theorem 2.1 we use the almost sure
convergence of (〈1, ũt 〉, 〈1, ṽt 〉) to (B1

τ ,B2
τ ). Combining this with Fatou’s lemma

gives

lim inf
t→∞ E

1k,1k [(〈1, ũt 〉 + 〈1, ṽt 〉)p] ≥ lim inf
t→∞ E

1k,1k [〈1, ũt 〉p]

≥ E
1k,1k

[
lim inf
t→∞ 〈1, ũt 〉p

]
= E1,1[(B1

τ )p].
The right-hand side is infinite due to Theorem 5.1 and hence E

1k,1k [(〈1, ũt 〉 +
〈1, ṽt 〉)p] diverges. Equation (5.10) now shows that E

1,1[(ut (k) + vt (k))p] also
grows without bound. Since symbiotic branching processes are nonnegative, this
is also true for E

1,1[ut(k)p] as can be seen as follows:

E
1,1[(

ut (k) + vt (k)
)p] ≤ E

1,1[
(2ut (k))p1{ut (k)≥vt (k)}

]
+ E

1,1[
(2vt (k))p1{ut (k)<vt (k)}

]
≤ 2p

E
1,1[ut (k)p] + 2p

E
1,1[vt (k)p]

= 2p+1
E

1,1[ut(k)p],
where we used Lemma 3.3 to see that E

1,1[ut(k)p] = E
1,1[vt (k)p].

Step 3. The proof for cSBM(�, κ)1,1 is slightly more involved since we cannot
use the indicator 1x to get ut (x) = 〈ut ,1x〉, where now 〈f,g〉 = ∫

R
f (x)g(x) dx.

Instead we use a standard smoothing procedure. For fixed x ∈ R let

pε(y) = 1√
2πε

e−(x−y)2/(2ε),

where we skip the dependence on x. The main part is to show that∥∥(
ut(x) + vt (x)

) − (〈ut ,pε〉 + 〈vt ,pε〉)
∥∥
Lp

(5.11)
≤ ‖ut (x) − 〈ut ,pε〉‖Lp + ‖vt (x) − 〈vt ,pε〉‖Lp

ε→0→ 0,

which implies

lim
ε→0

‖〈ut ,pε〉 + 〈vt ,pε〉‖Lp = ‖ut (x) + vt (x)‖Lp .(5.12)

Due to symmetry we only consider ‖ut(x) − 〈ut ,pε〉‖Lp . To prove (5.11) we first
observe that, due to the Green function representation provided in Corollary 19
of [8],

‖ut (x) − 〈ut ,pε〉‖Lp

=
∥∥∥∥Ptu0(x) − 〈Pt+ε, u0〉 +

∫ t

0

∫
R

pt−s(x − b)M(ds, db)

−
∫ t

0

∫
R

Pt−spε(x − b)M(ds, db)

∥∥∥∥
Lp

,
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where M(ds, db) is a zero-mean martingale measure with quadratic variation[∫ ·
0

∫
R

f (s, b)M(ds, db)

]
t

= κ

∫ t

0

∫
R

f 2(s, b)us(b)vs(b) ds db

for test functions f such that the integral is well defined (see Lemma 18 of [8] for
details).

For homogeneous initial conditions, the first difference vanishes and it suffices
to concentrate on the difference of the stochastic integrals. By the Burkholder–
Davis–Gundy inequality the difference of the integrals can be estimated as

E

[(∫ t

0

∫
R

pt−s(x − b)M(ds, db) −
∫ t

0

∫
R

Pt−spε(x − b)M(ds, db)

)p]

≤ Cκp/2
E

[(∫ t

0

∫
R

(
pt−s(x − b) − pε+t−s(x − b)

)2
us(b)vs(b) ds db

)p/2]
.

Now expanding (pt−s(x − b) − pε+t−s(x − b))2us(b)vs(b) as(
pt−s(x − b) − pε+t−s(x − b)

)2(p−1)/p

× (
pt−s(x − b) − pε+t−s(x − b)

)2/p
us(b)vs(b),

we get the upper bound (taking the expectation under the integral is valid since the
integrands are nonnegative)

Cκp/2
[(∫ t

0

∫
R

(
pt−s(x − b) − pε+t−s(x − b)

)2
ds db

)p−1

×
∫ t

0

∫
R

(
pt−s(x − b) − pε+t−s(x − b)

)2
E[(us(b)vs(b))p]ds db

]
,

where we have used that, for f,g ∈ Lp ,(∫ (
f 2(p−1)/p)

(f 2/pg) dx

)p

≤
(∫

f 2 dx

)p−1 ∫
f 2gp dx

by Hölder’s inequality. As in [8], page 153, the second term can now be bounded
from above by a constant depending only on p and t . The first factor can be es-
timated by ε(p−1)/2 due to [22], Lemma 6.2. Hence, for fixed p > 1, x ∈ R and
t ≥ 0, (5.11) holds and thus we obtain (5.12). The rest of the proof is similar to the
discrete case but slightly more technical. Since pε(x − ·) is rapidly decreasing, we
have

E
1,1[

e−2θ
√

1−�〈ut+vt ,pε〉] = E
θpε,θpε

[
e−2

√
1−�〈1,ũt+ṽt 〉]

= E
pε,pε

[
e−√

1−�2θ〈1,ũt+ṽt 〉].
Thus, we get

L1,1(〈ut + vt ,pε〉) = Lpε,pε (〈1, ũt + ṽt 〉)
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and in particular

E
1,1[(〈ut + vt ,pε〉)p] = E

pε,pε [(〈1, ũt 〉 + 〈1, ṽt 〉)p].
We may now finish the proof in a similar way to the discrete case.

“⇒.” Due to (5.12) we are done if we can bound E
1,1[〈ut + vt ,pε〉p] indepen-

dently of ε > 0 and t ≥ 0. This can be done as before: 〈1, ũt 〉 and 〈1, ṽt 〉 are random
time-changed correlated Brownian motions with initial conditions 〈1,pε〉 = 1 for
all ε > 0. Using, as before, the auxiliary martingale

M̄t = 〈1, ũt 〉 + 〈1, ṽt 〉 − 〈1, ũ0〉 − 〈1, ṽ0〉,
we obtain (as in the discrete case) with the help of the Burkholder–Davis–Gundy
inequality

E
1,1[(

ut (x) + vt (x)
)p] = lim

ε→0
E

1,1[〈ut + vt ,pε〉p]
= lim

ε→0
E

pε,pε [〈1, ũt + ṽt 〉p]
≤ Cp + Cp lim

ε→0
E

pε,pε [M̄p
t ]

≤ Cp + C′
p lim

ε→0
E

pε,pε [[M̄·]p/2
t ]

≤ Cp + C′
p(2 + 2�)p/2E1,1[τp/2].

The positive constants Cp,C′
p are independent of ε and t , whereas M̄ and the

random time change [M̄·]t do depend on ε. However, the bound [M̄·]t ≤ τ holds
for all ε > 0 and t ≥ 0 since B1

0 = B2
0 = 〈1,pε〉 = 1. For � < �(p) the right-

hand side is finite by Theorem 5.1 and independent of t ≥ 0. Since E
1,1[ut (x)p] ≤

E
1,1[(ut (x) + vt (x))p], the first direction is shown.
“⇐.” First note that by translation invariance of initial condition, spatial motion

and white noise

E
1,1[(

ut(x) + vt (x)
)p] = E

1,1[(
ut(y) + vt (y)

)p]
for fixed time t ≥ 0 and arbitrary spatial positions x, y ∈ R implying that

E
1,1[(

ut (x) + vt (x)
)p] =

∫ x+1/2

x−1/2
E

1,1[(
ut(y) + vt (y)

)p]
dy.

Using Fubini’s theorem and Jensen’s inequality we obtain for p > 1 the lower
bound

E
1,1[(

ut(x) + vt (x)
)p] ≥ E

1,1
[(∫ x+1/2

x−1/2

(
ut (y) + vt (y)

)
dy

)p]

= E
1,1[〈

ut + vt ,1(x−1/2,x+1/2)

〉p]
.
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We now choose an arbitrary nonnegative (nontrivial) smooth function f with sup-
port contained in (x − 1/2, x + 1/2) that is bounded by 1 and integrates to some
c ∈ (0,1), say. A lower bound is now given by

E
1,1[(

ut(x) + vt (x)
)p] ≥ E

1,1[〈ut + vt , f 〉p]
= E

f,f [〈ũt + ṽt ,1〉p]
≥ E

f,f [〈ũt ,1〉p],
where we utilized for the equality the self-duality of Proposition 5 of [8].

Finally, as in the discrete case, Fatou’s lemma and the martingale convergence
theorem imply

lim inf
t→∞ E

1,1[(
ut(x) + vt (x)

)p] ≥ Ec,c[(B1
τ )p] = ∞

by Theorem 5.1 and due to nonnegativity of solutions as well

lim inf
t→∞ E

1,1[ut (x)p] = ∞
proving the claim.

Step 4. The first direction of the above proof for dSBM(�, κ)1,1 also works
for the transient case since E

1k,1k [[M̄·]p/2∞ ] ≤ E1,1[τp/2] is independent of recur-
rence/transience. �

5.3. Proof of Theorem 2.7. We now study the “criticality” of the critical
curve in more detail. As a preliminary result (mixed) moments of the nonspa-
tial model are analyzed. The idea is to combine three different techniques: the
martingale argument which led to Theorem 2.5 for E

1,1[un
t ], a perturbation ar-

gument based on the moment duality which allows us to deduce exponential in-
crease/decrease of E

1,1[un−1
t vt ], and finally moment equations which yield expo-

nential increase/decrease for all mixed moments E
1,1[un−m

t vm
t ].

PROPOSITION 5.2. The following hold for nonspatial symbiotic branching
processes:

(1) For all κ > 0 and n ∈ N:
• E

1,1[un
t ] grows to a finite constant if � < �(n),

• E
1,1[un

t ] grows subexponentially fast to infinity if � = �(n),
• E

1,1[un
t ] grows exponentially fast if � > �(n).

(2) For all κ > 0, n ∈ N and m = 1, . . . , n − 1:
• E

1,1[un−m
t vm

t ] decreases exponentially fast if � < �(n),
• E

1,1[un−m
t vm

t ] neither grows exponentially fast nor decreases exponentially
fast if � = �(n),

• E
1,1[un−m

t vm
t ] grows exponentially fast if � > �(n).
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PROOF. Step 1. Martingale arguments based on the connection of moments of
exit times and exit points of correlated Brownian motions were carried out in the
proof of Theorem 2.5. This led to the first part of (1). Applying Hölder’s inequality
with p = n

n−m
, q = n

m
, we get the bound

E
1,1[un−m

t vm
t ] ≤ E

1,1[un
t ](n−m)/n

E
1,1[vn

t ]m/n = E
1,1[un

t ](5.13)

by symmetry. This implies that for � < �(n) all mixed moments stay bounded as
well.

Step 2. We apply the moment duality for the nonspatial model as explained in
Remark 3.4. Combining the duality with the martingale argument of the first step
we can understand the case � < �(n) for mixed moments in a simple way. Note
that for mixed moments the dual process starts with n − m particles of one color
and m particles of the other color at time 0. Note that for mixed moments L

�=
t ≥ t ,

since there is always at least one pair of different color. Now suppose � < �(n),
then for 0 < ε < �(n) − � we get

E
1,1[un−m

t vm
t ] = E

[
eκ(L=

t +�L
�=
t )] = E

[
eκ(L=

t +(�+ε)L
�=
t )e−κεL

�=
t
]

≤ E
[
eκ(L=

t +(�+ε)L
�=
t )]e−κεt .

Since the first factor of the right-hand side is just the moment E
1,1[un−m

t vm
t ] for

�+ε strictly smaller than �(n), this is bounded for all t and κ . Hence, for � < �(n)

all mixed moments decrease exponentially fast proving the first part of (2). Note
that since un

t is a submartingale, the moment E
1,1[un

t ] is nondecreasing.
For � = �(n) we first consider the pure moments. Again, for the critical case,

Theorem 2.5 implies

E
[
eκ(L=

t +(�(n)−ε)L
�=
t )] < C(ε) < ∞

for all ε > 0 and t ≥ 0. With the crude estimate L
�=
t ≤ (n

2

)
t we get

C(ε) > E
[
eκ(L=

t +�(n)L
�=
t )e−κεL

�=
t
] ≥ E

[
eκ(L=

t +�(n)L
�=
t )]e−κε(n

2)t .

Since ε is arbitrary this implies subexponential growth to infinity of E
1,1[ut(k)n]

at the critical point. Hence, the second part of (1) is proven and combined with
(5.13) so is the upper bound of the second part of (2).

Step 3. A direct application of Itô’s lemma and Fubini’s theorem yields

E
1,1[un

t ] = 1 + κ

(
n

2

)∫ t

0
E

1,1[un−1
s vs]ds.

Since we already know from the martingale arguments that E
1,1[un

t ] increases to
infinity in the critical case, the mixed moment E[un−1

t vt ] cannot decrease expo-
nentially fast proving the lower bound of part two of (2). Furthermore, with the
same arguments as above, for � > �(n), this leads to

E
1,1[un−1

t vt ] = E
[
eκ(L=

t +�(n)L
�=
t )eκ(�−�(n))L

�=
t
] ≥ E

[
eκ(L=

t +�(n)L
�=
t )]eκ(�−�(n))t .
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Since the first factor of the right-hand side equals E[un−1
t vt ] at the critical point,

it does not decrease exponentially fast. Hence, the product increases exponentially
fast. In particular, due to (5.13), this also implies the third part of (1). Now it only
remains to prove exponential increase for the other mixed moments. Again, using
Itô’s lemma and Fubini’s theorem yields the following moment equations for the
mixed moments:

E
1,1[un−2

t v2
t ] = 1 + κ

∫ t

0
E

1,1[un−1
s vs]ds + �(n − 2)κ

∫ t

0
E

1,1[un−2
s v2

s ]ds

+
(

n − 2
2

)
κ

∫ t

0
E

1,1[un−3
s v3

s ]ds

and similarly for all other mixed moments. Since we already know that
E

1,1[un−1
t vt ] grows exponentially fast in t , this implies exponential growth of

E
1,1[un−2

t v2
t ]. Iterating this argument gives exponential growth of all mixed mo-

ments for � > �(n). This shows the third part of (2) and the proof is finished.
�

Now it only remains to prove Theorem 2.7, where some ideas for the nonspatial
case are recycled.

PROOF OF THEOREM 2.7. First, due to Lemma 3.3, for homogeneous initial
conditions, the moments of ut(k) and vt (k) are equal for all t ≥ 0. For the existence
of the Lyapunov exponents we use a standard subadditivity argument. Hence, it
suffices to show

E
1,1[ut+s(k)n] ≤ E

1,1[ut(k)n]E1,1[us(k)n].
Using Lemma 3.3, we reduce the problem to E[eκ(L=

t +�L
�=
t )], where the dual

process (nt ) starts with n particles of the same color all placed at site k. By the
tower property and the strong Markov property, we obtain

E
n0

[
eκ(L=

t+s+�L
�=
t+s )

] = E
n0

[
eκ(L=

t +�L
�=
t )

E
nt

[
eκ(L=

s +�L
�=
s )]].

We are done if we can show that

E
n′[

eκ(L=
s +�L

�=
s )] ≤ E

n0
[
eκ(L=

s +�L
�=
s )](5.14)

for any given initial configuration n′ of the dual process consisting of n particles.
The general initial conditions of the dual process consist of n1 particles of one
color and n2 particles of the other color (n1 + n2 = n) distributed arbitrarily in
space at positions k1, . . . , kn. Using the duality relation of Lemma 3.3, we obtain

E
n′[

eκ(L=
s +�L

�=
s )] = E

1,1[us(k1) · · · us(kn1)vs(kn1+1) · · · vs(kn1+n2)]
≤ E

1,1[us(k)n] = E
n0

[
eκ(L=

s +�L
�=
s )],
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where, in the penultimate step, we have used the generalized Hölder inequality.
Having established existence of the Lyapunov exponents, we now turn to the

more interesting question of positivity. The boundedness for � < �(n) in Theo-
rem 2.5 immediately implies that in this case γ (�, κ) = 0. Now suppose � = �(n),
that is, (�,n) lies on critical curve. We use the perturbation argument which we al-
ready used for the nonspatial case combined with Lemma 3.3 and Theorem 2.5
to prove that in this case moments only grow subexponentially fast. This im-
plies that the Lyapunov exponents are zero. Again we switch from E

1,1[ut(k)n]
to E[eκ(L=

t +�L
�=
t )], where the dual process is started with all particles at the same

site and the same color. Since moments below the critical curve are bounded, we
can proceed as for the nonspatial model. For any ε > 0, we get

∞ > C(ε) > E
[
eκ(L=

t +�L
�=
t )e−κεL

�=
t
] ≥ E

[
eκ(L=

t +�L
�=
t )]e−κε(n

2)t

≥ E
1,1[ut(k)n]e−κε(n

2)t ,

where we estimated the collision time of particles of different colors by the col-
lision time of all particles which is bounded from above by

(n
2

)
t . Since ε on the

right-hand side is arbitrary, γ (�, κ) cannot be positive.
Finally, we assume � > �(n). The idea is to reduce the problem to the

nonspatial case which we already discussed in Proposition 5.2. Actually, we
prove more than stated in the theorem since we also show that mixed moments
E

1,1[ut (k)n−mvt (k)m] grow exponentially fast. For m = 1, . . . , n− 1 the perturba-
tion argument leads to

E
1,1[ut (k)n−mvt (k)m] = E

[
eκ(L=

t +�L
�=
t )] = E

[
eκ(L=

t +�(n)L
�=
t )eκ(�−�(n))L

�=
t
]
.

The idea is to obtain a lower bound by conditioning on the event that all particles
have not changed their spatial positions before time t (but, of course, have changed
their colors). Under this condition the particle dual is precisely the particle dual of
the nonspatial model. More precisely, we get the lower bound

E
[
eκ(L=

t +�(n)L
�=
t )eκ(�−�(n))L

�=
t ;no spatial change of particles before time t

]
= E

[
eκ(L=

t +�(n)L
�=
t )eκ(�−�(n))L

�=
t |no spatial change of particles before time t

]
× P[no spatial change of particles before time t]

= E
[
eκ(L=

t +�(n)L
�=
t )eκ(�−�(n))L

�=
t |no spatial change of particles

]
e−nt ,

where the final equality is valid since the event {no spatial change of particles
before time t} has probability e−nt . This is true since the event is precisely the
event that n independent exponential clocks with parameter 1 did not ring before
time t . For 1 ≤ m ≤ n − 1 there is always at least one pair of particles of different
colors and, hence, we get the lower bound

E
[
eκ(L=

t +�(n)L
�=
t )|no spatial change of particles until time t

]
eκ(�−�(n))t e−nt ,



ON THE SYMBIOTIC BRANCHING MODEL 285

which equals

E
1,1[un−m

t vm
t ]eκ(�−�(n))t e−nt

for a nonspatial symbiotic branching process with critical correlation � = �(n).
Choosing κ such that κ(�−�(n)) > n the result now follows from Proposition 5.2.

�

As mentioned in the course of the proof, we actually proved that for � > �(n)

and m = 0, . . . , n

E
1,1[ut(k)n−m(k)vm

t (k)]
grows exponentially in t . As for the nonspatial model one could ask whether, and
if so how fast, mixed moments decrease for � < �(n). For the second moments it
was shown in [1] that for � < �(2) = 0

E
1,1[ut (k)vt (k)] ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
t
, d = 1,

1

log(t)
, d = 2,

1, d ≥ 3,

where ≈ denotes weak asymptotic equivalence as t → ∞. It would be interesting
to see whether or not different rates of decrease appear for moments.

A detailed quantitative study of the Lyapunov exponents as functions of � and
κ has so far only been carried out for second moments (see [1]). In contrast to
the parabolic Anderson model, where higher Lyapunov exponents are well studied
(see [9]), we do not have much insight. Only a first upper bound for the Lyapunov
exponents in κ and the distance to the critical curve can be obtained from the
perturbation argument of the previous proof.

PROPOSITION 5.3. If � > �(n), then γn(�, κ) ≤ κ
(n
2

)
(� − �(n)).

PROOF. By Lemma 3.3 and Theorem 2.5 for � > �(n), there are constants
C(ε) such that

C(ε) > E
[
eκ(L=

t +(�−(�−�(n))−ε)L
�=
t )]

= E
[
eκ(L=

t +�L
�=
t )e−κ(�−�(n)+ε)L

�=
t
]

≥ E
[
eκ(L=

t +�L
�=
t )]e−κ(�−�(n)+ε)(n

2)t .

Hence, for all ε > 0

E
1,1[ut(k)n] ≤ C(ε)eκ(�−�(n)+ε)(n

2)t ,

yielding the result. �
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6. Speed of propagation of the interface. In this section we show how to
use the moment bounds of Theorem 2.5 to obtain an improved upper bound on the
speed of propagation of the interface as defined in Definition 2.10. We will only
sketch the crucial parts in the proof of Theorem 6 of [8] that need modification.
Note that the method used here is based on Mueller’s “dyadic grid technique”
introduced in [17].

PROOF OF THEOREM 2.11. To prove that the interface will eventually be con-
tained in [−C

√
T log(T ),C

√
T log(T )

]
(for suitable C > 0), by symmetry, it suffices to show that the right endpoint of the
interface

R(ut ) := sup{x ∈ R|ut(x) > 0}
up to time T can eventually be bounded by C

√
T log(T ). To this end we define

An :=
{
sup
t≤n

R(ut ) > C
√

n log(n)
}

and show that, for suitably chosen C, P
1

R− ,1
R+ (lim supn∈N An) = 0. By the Borel–

Cantelli lemma, this follows from

∞∑
n=0

P
1

R− ,1
R+ (An) < ∞.(6.1)

In the following we modify the arguments of [8] to obtain an upper bound for
P

1
R− ,1

R+ (An) which is sumamble over n.

LEMMA 6.1. For any integer n there is a finite constant cn such that for � <

�(4n − 1)

E
1

R− ,1
R+ [(ut (x)vt (x))n] ≤ cn

√
Pt1R−(x), x ∈ R, t ≥ 0.

PROOF. First recall from (87) of [8] that E
1

R− ,1
R+ [ut (x)] = Pt1R−(x). We

now use Hölder’s inequality and Theorem 2.5 to reduce the mixed moment to the
first moment:

E
1

R− ,1
R+ [(ut (x)vt (x))n]

= E
1

R− ,1
R+ [ut (x)1/2ut(x)n−1/2vt (x)n]

≤ (E1
R− ,1

R+ [ut(x)])1/2(E1,1[ut (x)4n−1])(2n−1)/(8n−2)

× (E1,1[vt (x)4n−1])n/(4n−1).
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This follows from the generalized Hölder inequality with exponents 2, (8n −
2)/(2n − 1) and (4n − 1)/n. The first factor yields the heat flow and Theorem 2.5
shows that the latter two factors are bounded by constants for � < �(4n − 1). �

We now strengthen the estimate of Lemma 23 of [8] of the stochastic part

Nt(b) =
∫ t

0

∫
R

pt−s(b − a)M(ds, da)

of the convolution representation of solutions of Corollary 20 of [8].

LEMMA 6.2. For � < �(35) there is a constant C3 such that for ε ∈ (0,1),
A,T ≥ 1, the following estimate holds:

P
1

R− ,1
R+ (|Nt(b)| ≥ ε for some t ≤ T and b ≥ A

) ≤ C3ε
−18 T 22

√
A

p2T (A).

PROOF. The proof is along the same lines of [8] replacing only in (116) the
weaker (exponentially growing) moment bound of [8] by our stronger (bounded)
moment bound. In the following we sketch the arguments to show where the mo-
ments appear. Before performing the “dyadic grid technique,” increments of Nt

need to be estimated. First, by definition

E
1

R− ,1
R+ [|Nt(a) − Nt ′(a

′)|2q]

= E
1

R− ,1
R+

[∣∣∣∣
∫ t

0

∫
R

(
pt−s(b − a) − pt ′−s(b − a′)

)
M(ds, db)

∣∣∣∣
2q]

,

which by Burkholder–Davis–Gundy and Hölder’s inequality gives the upper bound

C1

∣∣∣∣
∫ t

0

∫
R

[pt−s(b − a) − pt ′−s(b − a′)]2 db ds

∣∣∣∣
q−1

×
∫ t

0

∫
R

[pt−s(b − a) − pt ′−s(b − a′)]2
E

1
R− ,1

R+ [(us(b)vs(b))q]db ds.

Using Lemma 6.1 and classical heat kernel estimates we can derive (see the
calculation on pages 153, 154 of [8]) the upper bound

E
1

R− ,1
R+ [|Nt(a) − Nt ′(a

′)|2q]
≤ C2

(
(|t ′ − t |1/2 + |a′ − a|) ∧ t1/2)q−1(√

tPt1R−(a) +
√

t ′Pt ′1R−(a′)
)
.

This upper bound corresponds to (119) of [8] where they have an additional ex-
ponentially growing factor coming from their moment bound. The dyadic grid
technique can now be carried out as in [8], choosing q = 9, without carrying along
their exponential factor. Hence, we may delete the exponential term from their fi-
nal estimate (110). Note that the necessity of � < �(35) comes from our choice
q = 9 and Lemma 6.1. �

The following lemma corresponds to Proposition 24 of [8].



288 J. BLATH, L. DÖRING AND A. ETHERIDGE

LEMMA 6.3. If � < �(35) then, for some constants C4,C5, the following es-
timate holds for T ≥ 1 and r ≥ C4

√
T :

P
1

R− ,1
R+

(
sup
t≤T

R(ut ) > r
)

≤ C5T
22p16T (r).

PROOF. All we need to do is to argue that Proposition 24 of [8] is valid for
r ≥ C4

√
T instead of r ≥ 94(1 ∨ κ)T . We perform the same decomposition and

note that the estimates of Step 2 of [8] are already given for r ≥ C4
√

T if C4 is
large enough. The only trouble occurs in their Step 3. Up to the estimate (154),
this step works for r ≥ C4

√
T but here their (weaker) Lemma 23 produces an

exponential in T . More precisely, they need to justify

e95κ2T/c T 22
√

r
p8T (r) ≤ T 22p16T (r),

which is only valid for r ≥ 94(1 ∨ κ)T . As our Lemma 6.2 avoids the exponential
on the left-hand side the estimate holds for r ≥ C4

√
T with suitably chosen C4

and C5. �

The significant distinction of the previous lemma to the result of [8] is that the
inequality is not only valid for r ≥ 94(1 ∨ κ)T but for r ≥ C4

√
T . At this point

one might hope to obtain a square-root upper bound for the growth of the interface
but this fails in the final step in which we validate (6.1):

∞∑
n=0

P
1

R− ,1
R+ (An) ≤

∞∑
n=0

C5n
22p16n

(
C

√
n log(n)

)

=
∞∑

n=0

C5n
22 1√

π32n
e−C2n log(n)/(32n)

= C5√
32π

∞∑
n=0

n22−C2/32−1/2,

which is finite for C large enough. �
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