The Annals of Probability

Backwards SDE with random terminal time and applications to semilinear elliptic PDE

R. W. R. Darling and Etienne Pardoux

Full-text: Open access


Suppose ${\Im_t}$ is the filtration induced by a Wiener process $W$ in $R^d$, $\tau$ is a finite ${\Im_t}$ stopping time (terminal time), $\xi$ is an ${\Im_{\tau}}$-measurable random variable in $R^k$ (terminal value) and $f(\cdot, y, z)$ is a coefficient process, depending on $y \in R^k$ and $z \in L(R^d, R^k)$, satisfying $(y - \tilde{y})[f(s, y, z) - f(s, \tilde{y}, z)] \leq - a|y - \tilde{y}|^2$ ($f$ need not be Lipschitz in $y$), and $|f(s, y, z) - f(s, y, \tilde{z})| \leq b||z - \tilde{z}||$, for some real $a$ and $b$, plus other mild conditions. We identify a Hilbert space, depending on $\tau$ and on the number $\gamma \equiv b^2 - 2a$, in which there exists a unique pair of adapted processes $(Y, Z)$ satisfying the stochastic differential equation $$dY(s) = 1_{{s \leq \tau}} [Z(s) dW(s) - f(s, Y(s), Z(s)) ds]$$ with the given terminal condition $Y(\tau) - \xi$, provided a certain integrability condition holds. This result is applied to construct a continuous viscosity solution to the Dirichlet problem for a class of semilinear elliptic PDE’s.

Article information

Ann. Probab., Volume 25, Number 3 (1997), 1135-1159.

First available in Project Euclid: 18 June 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H20: Stochastic integral equations
Secondary: 35J60: Nonlinear elliptic equations 90A09

Stochastic differential equation monotonicity stopping time Brownian motion viscosity solution semilinear elliptic PDE


Darling, R. W. R.; Pardoux, Etienne. Backwards SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25 (1997), no. 3, 1135--1159. doi:10.1214/aop/1024404508.

Export citation


  • BARLES, G., BUCKDAHN, R. and PARDOUX, E. 1997. Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60 57 83. Z.
  • BARLES, G. and BURDEAU, J. 1995. The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Comm. Partial Differential Equations 20 129 178. Z.
  • BARLES, G. and MURAT, F. 1995. Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Rational Mech. Anal. 133 77 101. Z.
  • CRANDALL, M., ISHII, H. and LIONS, P. L. 1992. User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 1 67. Z.
  • DARLING, R. W. R. 1995. Constructing gamma-martingales with prescribed limit using backwards SDE. Ann. Probab. 23 1234 1261. Z.
  • PARDOUX, E. and PENG, S. 1990. Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55 61. Z.
  • PARDOUX, E. and PENG, S. 1994. Some backward stochastic differential equations with nonLipschitz coefficients. Univ. Provence URA 225, Preprint 94-3. Z.
  • PARDOUX, E., PRADEILLES, F. and RAO, Z. 1995. Probabilistic interpretation for a system of nonlinear parabolic partial differential equations. Ann. Inst. H. Poincare Probab. ´ Statist. To appear. Z.
  • PENG, S. 1991. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Stochastics Rep. 37 61 74. Z.
  • REVUZ, D. and YOR, M. 1991. Continuous Martingales and Brownian Motion. Springer, Berlin. Z.
  • STROOCK, D. W. and VARADHAN, S. R. S. 1972. On degenerate elliptic-parabolic operators of second order and their associated diffusions. Comm. Pure Appl. Math. 25 651 713.